Improved thermal conductivity of polycarbonate composites filled with hybrid exfoliated graphite/multi-walled carbon nanotube fillers
详细信息    查看全文
  • 作者:Feng Zhang ; Qiuying Li ; Yujin Liu…
  • 关键词:Polycarbonate ; Carbon filler ; Thermal conductivity ; Hybrid filler
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:123
  • 期:1
  • 页码:431-437
  • 全文大小:1,189 KB
  • 参考文献:1.Fukuyama Y, Senda M, Kawai T, Kuroda S, Toyonaga M, Taniike T, Terano M. The effect of the addition of polypropylene-grafted SiO2 nanoparticle on the thermal conductivity of isotactic polypropylene. J Therm Anal Calorim. 2014;117(3):1397–405.CrossRef
    2.Zhou T, Wang X, Liu X, Xiong D. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon. 2010;48(4):1171–6.CrossRef
    3.Harish S, Ishikawa K, Einarsson E, Aikawa S, Chiashi S, Shiomi J, Maruyama S. Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions. Int J Heat Mass Transfer. 2012;55(13–14):3885–90.CrossRef
    4.Fang X, Ding Q, Fan LW. Thermal conductivity enhancement of ethylene glycol-based suspensions in the presence of silver nanoparticles of various shapes. J Heat Transfer. 2014;136(3):034501–7.CrossRef
    5.Mu Q, Feng S, Diao G. Thermal conductivity of silicone rubber filled with ZnO. Polym Compos. 2007;28(2):125–30.CrossRef
    6.Guo JX, Saha P, Liang JF, Saha M, Grady BP. Multi-walled carbon nanotubes coated by multi-layer silica for improving thermal conductivity of polymer composites. J Therm Anal Calorim. 2013;113(2):467–74.CrossRef
    7.Harada M, Hamaura N, Ochi M, Agari Y. Thermal conductivity of liquid crystalline epoxy/BN filler composites having ordered network structure. Compos B. 2013;55:306–13.CrossRef
    8.Yu S, Kim DH, Park C, Hong SM, Koo CM. Thermal conductivity behavior of SiC–Nylon 6,6 and hBN-Nylon 6,6 composites. Res Chem Intermed. 2014;40(1):33–40.CrossRef
    9.Ciecierska E, Boczkowska A, Kurzydlowski KJ, Rosca ID, Hoa SV. The effect of carbon nanotubes on epoxy matrix nanocomposites. J Therm Anal Calorim. 2013;111(2):1019–24.CrossRef
    10.Wang N, Zhang XR, Zhu DS, Gao JW. The investigation of thermal conductivity and energy storage properties of graphite/paraffin composites. J Therm Anal Calorim. 2012;107(3):949–54.CrossRef
    11.Ma AJ, Li H, Chen W, Hou Y. Improved thermal conductivity of silicon carbide/carbon fiber/epoxy resin composites. Polym Plast Technol Eng. 2013;52:295–9.CrossRef
    12.Teng CC, Ma CCM, Chiou KC, Lee TM, Shih YF. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites. Mater Chem Phys. 2011;126(3):722–8.CrossRef
    13.Ganguli S, Roy AK, Anderson DP. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon. 2008;46(5):806–17.CrossRef
    14.Teng CC, Ma CCM, Lu CH, Yang SY, Lee SH, Hsiao MC. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon. 2011;49(15):5107–16.CrossRef
    15.Kong KTS, Mariatti M, Rashid AA, Busfield JJC. Enhanced conductivity behavior of polydimethylsiloxane (PDMS) hybrid composites containing exfoliated graphite nanoplatelets and carbon nanotubes. Compos B. 2014;58:457–62.CrossRef
    16.Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma MMC. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon. 2011;49(3):793–803.CrossRef
    17.Soares FC, Yamashita F, Müller CMO, Pires ATN. Effect of cooling and coating on thermoplastic starch/poly(lactic acid) blend sheets. Polym Test. 2014;33:34–9.CrossRef
    18.Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci. 2011;36(7):914–44.CrossRef
    19.Bigg DM. Thermally conductive polymer compositions. Polym Compos. 1986;7(3):125–40.CrossRef
    20.Debelak B, Lafdi K. Use of exfoliated graphite filler to enhance polymer physical properties. Carbon. 2007;45(9):1727–34.CrossRef
  • 作者单位:Feng Zhang (1)
    Qiuying Li (1)
    Yujin Liu (1)
    Shijie Zhang (1)
    Chifei Wu (1)
    Weihong Guo (1)

    1. Shanghai Key Laboratory Polymeric Materials, Key Laboratory of Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
The thermal conductivities of polycarbonate (PC) composites filled with carbon fillers, including carbon black (CB), multi-walled carbon nanotubes (MWCNTs) and exfoliated graphite (EG), were studied. EG filler provided substantially greater thermal conductivity enhancement when embedded into PC matrix compared with CB and MWCNTs at the same loading. To further improve the thermal conductivity of PC composite, a hybrid EG/MWCNTs filler was used. When the hybrid filler loading was 10 mass%, the radio of EG: MWCNTs was 9:1, and the thermal conductivity of PC composite showed a maximum value of 1.19 W m−1 K−1 higher than that filled with EG or MWCNTs alone, indicating that the combination of EG and MWCNTs demonstrated a synergistic effect for the thermal conductivity enhancement of PC. EG/MWCNTs/PC composite with thermal conductivity >5 W m−1 K−1 was fabricated when the filler content was 40 mass%, which would widen its field of applications in electrons, LED lamps and aerospace.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700