Music with Unconventional Computing: Towards a Step Sequencer from Plasmodium of Physarum Polycephalum
详细信息    查看全文
  • 关键词:Physarum polycephalum ; Sonification ; Unconventional computing ; Computer music ; Future music ; Biomusic ; Step sequencer ; Bionic engineering
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2015
  • 出版时间:2015
  • 年:2015
  • 卷:9027
  • 期:1
  • 页码:15-26
  • 全文大小:1,424 KB
  • 参考文献:1. Doornbusch, P (2004) Computer sound synthesis in 1951: the music of CSIRAC. Comput. Music J. 28: pp. 10-25 CrossRef
    2. Turing, AM (1936) On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42: pp. 230-265
    3. Neumann, J First draft of a report on the edvac. In: Randall, B eds. (1982) The Origins of Digital Computers. Springer, New York, pp. 383-392 CrossRef
    4. Toffoli, T (1998) Programmable matter methods. Future Gener. Comput. Syst. 16: pp. 187-201 CrossRef
    5. Adamatzky, A, Teuscher, C (2006) From Utopian to Genuine Unconventional Computers. Luniver Press, Beckington
    6. Stepney, S (2012) Programming unconventional computers: dynamics, development, self-reference. Entropy 14: pp. 1939-1952 CrossRef
    7. Braund, E., Miranda, E.: Unconventional computing in music. In: Proceedings of the 9th Conference on Interdisciplinary Musicology - CIM14, Berlin, Germany (2014)
    8. Miranda, ER (1995) Granular synthesis of sounds by means of a cellular automaton. Leonardo 28: pp. 297-300 CrossRef
    9. Miranda, ER, Bull, L, Gueguen, F, Uroukov, IS (2009) Computer music meets unconventional computing: towards sound synthesis with in vitro neuronal networks. Comput. Music J. 33: pp. 9-18 CrossRef
    10. Meyer, R, Stockem, W (1979) Studies on microplasmodia of physarum polycephalum V: Electrical activity of different types of microplasmodia and macroplasmodia. Cell Biol. Int. Rep. 3: pp. 321-330 CrossRef
    11. Adamatzky, A, Jones, J (2011) On electrical correlates of Physarum polycephalum spatial activity: Can we see Physarum Machine in the dark. Biophys. Rev. Lett. 6: pp. 29-57 CrossRef
    12. Adamatzky, A, Schubert, T (2014) Slime mold microfluidic logical gates. Mater. Today 17: pp. 86-91 CrossRef
    13. Adamatzky, A (2013) Towards slime mould colour sensor: Recognition of colours by Physarum polycephalum. Org. Electron. 14: pp. 3355-3361 CrossRef
    14. Tsuda, S, Zauner, KP, Gunji, YP (2007) Robot control with biological cells. Biosystems 87: pp. 215-223 CrossRef
    15. Adamatzky, A (2010) Physarum Machines: Computers from Slime Mould. World Scientific, Singapore
    16. Jones, J (2010) The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. IJUC 6: pp. 125-144
    17. Miranda, ER, Adamatzky, A, Jones, J (2011) Sounds synthesis with slime mould of physarum polycephalum. J. Bionic Eng. 8: pp. 107-113 CrossRef
    18. Miranda, ER (2014) Harnessing the Intelligence of physarum polycephalum for unconventional computing-aided musical composition. IJUC 10: pp. 251-268
    19. Braund, E.: Unconventional Computer Music with Physarum Polycephalum. Master’s thesis, Plymouth University (2013)
    20. Braund, E, Miranda, E Music with unconventional computing: a system for physarum polycephalum sound synthesis. In: Aramaki, M, Derrien, O, Kronland-Martinet, R, Ystad, SI eds. (2014) Sound, Music, and Motion. Springer, Heidelberg, pp. 175-189 CrossRef
    21. Braund, E.: Physarm polycephalum step sequencer examples (2015). https://soundcloud.com/ed-braund
    22. Coggin, S, Pazun, J (1996) Dynamic complexity inPhysarum polycephalum shuttle streaming. Protoplasma 194: pp. 243-249
文摘
The field of computer music has evolved in tandem with advances made in computer science. We are interested in how the developing field of unconventional computation may provide new pathways for music and related technologies. In this paper, we outline our initial work into harnessing the behaviour of the biological computing substrate Physarum polycephalum for a musical step sequencer. The plasmodium of Physarum polycephalum is an amorphous unicellular organism, which moves like a giant amoeba as it navigates its environment for food. Our research manipulates the organism’s route-efficient propagation characteristics in order to create a growth environment for musical/sound arrangement. We experiment with this device in two different scenarios: sample triggering and MIDI note triggering using sonification techniques.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700