Atomistic simulation of the elongation response of a <011> oriented columnar nano-grain bcc Fe polycrystalline sample
详细信息    查看全文
  • 作者:J. Gil Sevillano ; I. Aldazabal ; A. Luque ; J. Aldazabal
  • 关键词:Molecular dynamics ; < ; 011> ; Textured nanocrystalline iron ; Crystal plasticity
  • 刊名:Meccanica
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:51
  • 期:2
  • 页码:401-413
  • 全文大小:3,371 KB
  • 参考文献:1.Gil Sevillano J, Van Houtte P, Aernoudt E (1980) Large strain work hardening and textures. Prog Mater Sci 25:69–412CrossRef
    2.Spitzig WA, Trybus CL, Laabs FC (1991) Structure properties of heavily cold-drawn niobium. Mater Sci Eng A 145:179–187CrossRef
    3.Gil Sevillano J, García-Rosales C, Flaquer Fuster J (1999) Texture and large-strain deformation microstructure. Philos Trans R Soc Lond A 357:1603–1619ADS CrossRef
    4.Tomota Y, Suzuki T, Kanie A, Shiota Y, Uno M, Moriai A, Minakawa N, Morii Y (2005) In situ neutron diffraction of heavily drawn steel wires with ultra-high strength under tensile loading. Acta Mater 53:463–467CrossRef
    5.Ocenásek J, Rodriguez Ripoll M, Weygand SM, Riedel H (2007) Multi-grain finite element model for studying the wire drawing process. Comput Mater Sci 39:23–28CrossRef
    6.Gil Sevillano J, González D, Martínez-Esnaola JM (2007) Heterogeneous deformation and internal stresses developed in BCC Wires by axisymmetric elongation. Mater Sci Forum 550:75–84. doi:10.​4028/​www.​scientific.​net/​MSF.​550.​75 CrossRef
    7.Gil Sevillano J, Alkorta J, González D, Van Petegem S, Stuhr U, Van Swygenhoven H (2008) In situ neutron diffraction study of internal microstresses developed by plastic elongation in <110> textured BCC wires. Adv Eng Mater 10:951–954. doi:10.​1002/​adem.​200800209 CrossRef
    8.Suzuki T, Tomota Y, Moriai A, Tashiro H (2009) High tensile strength of low-carbon ferritic steel subjected to severe drawing. Mater Trans 50:51–55CrossRef
    9.Langford G, Cohen M (1969) Strain hardening of iron by severe plastic deformation. Trans ASM 62:623–638
    10.Langford G, Cohen M (1970) Calculation of cell-size strengthening of wire-drawn iron. Metall Trans 1:1478–1480
    11.Langford G, Cohen M (1970) Proc 2nd Int Conf on the strength of metals and alloys (ICSMA 2), p 475 and Discussion, p 502, ASM, Cleveland
    12.Langford G, Cohen M (1975) Microestructural analysis by high-voltage electron diffraction of severe drawn iron wires. Metall Trans A 6:901–910CrossRef
    13.Frost H, Ashby MF (1982) Deformation mechanism maps. Pergamon Press, Oxford
    14.LAMMPS molecular dynamics simulator, http://​lammps.​sandia.​gov/​
    15.Mendelev MI, Han S, Srolovitz DJ, Ackland GJ, Sun DY, Asta M (2003) Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos Mag 83:3977–3994. doi:10.​1080/​1478643031000161​3264 ADS CrossRef
    16.Ackland GJ, Mendelev MI, Srolovitz DJ, Han S, Barashev AV (2004) Development of an interatomic potential for phosphorus impurities in α-iron. J Phys Condens Matter 16:S2629ADS CrossRef
    17.Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model Simul Mater Sci Eng 18:015012ADS CrossRef
    18.Krill CE, Helfen L, Michels D, Natter H, Fitch A, Masson O, Birringer R (2001) Size-dependent grain-growth kinetics observed in nanocrystalline Fe. Phys Rev Lett 86:842–845ADS CrossRef
    19.Rane GK, Welzel U, Meka SR, Mittemeijer EJ (2013) Non-monotonic lattice parameter variation with crystallite size in nanocrystalline solids. Acta Mater 12:4524–4533CrossRef
    20.Wolf D (1990) Correlation between the energy and structure of grain boundaries in b.c.c. Metals, II. Symmetrical tilt boundaries. Philos Mag 62:447–464ADS CrossRef
    21.Wolf D, Merkle K (1992) Correlation between the structure and energy of grain boundaries in metals. In: Wolf D, Yip S (eds) Materials interfaces: atomic-level structure and properties. Chapman & Hall, London, pp 87–150
    22.Bhattacharya SK, Tanaka S, Shiihara Y, Kohyama M (2013) Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress. J Phys Condens Matter. doi:10.​1088/​0953-8984/​25/​13/​135004
    23.Johnston WG, Gilman JJ (1959) Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. J Appl Phys 30:129–143. doi:10.​1063/​1.​1735121 ADS CrossRef
    24.Marian J, Cai W, Bulatov VV (2004) Dynamic transitions from smooth to rough to twinning in dislocation motion. Nat Mater 3:158–163. doi:10.​1038/​nmat1072 ADS CrossRef
    25.Brandl C, Derlet PM, Van Swygenhoven H (2009) Strain rates in molecular dynamics simulations of nanocrystalline metals. Philos Mag 89:3465–3475. doi:10.​1080/​1478643090331369​0 ADS CrossRef
    26.Kuramoto E, Aono Y, Kitajima K (1979) Thermally activated slip deformation of high purity iron single crystals between 4.2 K and 300 K. Scr Metall 13:1039–1042. doi:10.​1016/​0036-9748(79)90199-6 CrossRef
    27.Hirth JP, Lothe J (1991) Dislocations in solids. Krieger Publishing Company, Malabar
    28.Higginson RL, Sellars CM (2003) Worked examples in quantitative metallography. Maney Publishing, London
    29.Först CJ, Slycke J, Van Vliet KJ, Yip S (2006) Point defect concentrations in metastable Fe–C alloys. Phys Rev Lett 96:175501. doi:10.​1103/​PhysRevLett.​96.​175501 ADS CrossRef
    30.Oberdorfer B, Lorenzoni B, Unger K, Sprengel W, Zehetbauer M, Pippan R, Würschum R (2010) Absolute concentration of free volume-type defects in ultrafine-grained Fe prepared by high-pressure torsion. Scr Mater 63:452–455. doi:10.​1016/​j.​scriptamat.​2010.​05.​007 CrossRef
    31.Chen YZ, Csiszár G, Cizek J, Borchers C, Ungár T, Gotod S, Kirchheim R (2011) On the formation of vacancies in α-ferrite of a heavily cold-drawn pearlitic steel wire. Scr Mater 64:390–393. doi:10.​1016/​j.​scriptamat.​2010.​10.​039 CrossRef
    32.Puff W, Zhou X, Oberdorfer B, Scherwitzl B, Parz P, Sprengel W, Würschum R (2013) Comprehensive defect characterization of different iron samples after severe plastic deformation. J Phys Conf Ser 443:012033. doi:10.​1088/​1742-6596/​443/​1/​012033 ADS CrossRef
    33.Rack HJ, Cohen M (1970) Strain hardening of iron–titanium alloys at very large strains. Mater Sci Eng 6:320–326CrossRef
    34.Jang JSC, Koch CC (1990) The hall-petch relationship in nanocrystalline iron produced by ball milling. Scr Metall Mater 24:1599–1604. doi:10.​1016/​0956-716X(90)90439-N CrossRef
    35.Jang D, Atzmon M (2003) Grain-size dependence of plastic deformation in nanocrystalline Fe. J Appl Phys 93:9282–9286. doi:10.​1063/​1.​1569035 ADS CrossRef
    36.Lesuer DR, Syn CK, Sherby OD (2010) Nano-scale strengthening from grains, subgrains, and particles in Fe-based alloys. J Mater Sci 45:4889–4894. doi:10.​1007/​s10853-010-4391-x ADS CrossRef
  • 作者单位:J. Gil Sevillano (1)
    I. Aldazabal (2)
    A. Luque (3)
    J. Aldazabal (1)

    1. Ceit-IK4 and Tecnun, University of Navarra, P. Manuel de Lardizabal 15, 20018, San Sebastián, Spain
    2. Centro de Física de Materiales (CSIC-UPV/EHU) – MPC, P. Manuel de Lardizabal 5, 20018, San Sebastián, Spain
    3. Laboratory of Multiscale Mechanics Modelling, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Civil Engineering
    Automotive and Aerospace Engineering and Traffic
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1572-9648
文摘
The tensile elongation of an <011> oriented columnar nanocrystalline pure iron structure at a temperature of 300 K has been simulated by molecular dynamics (MD). The simulated sample contains 4.3 × 106 atoms and has been subject to free elongation along the <011> axis common to the grains. Periodic boundary conditions have been assumed. The grains are randomly oriented around their common <011> and the size of their cross section is about 10 nm. The stress–strain curve has been calculated up to 0.5 true strain. After elastic deformation and heterogeneous dislocation nucleation from the grain boundaries, it shows a peak stress of 8 GPa followed by a remarkably stable steady state with a flow stress of 5.15 GPa, where neither the crystallographic texture nor the grain structure show any important change despite the large plastic deformation imparted. Upon a strain reversal, a pronounced Bauschinger effect is then observed (−3.3 GPa compressive yield stress), followed by a hardening transient until the absolute level of the flow stress in compression reaches near the same value it had in tension when the unloading took place. The results of the MD simulation are discussed by comparison with experimental values of the strength and structural evolution of heavily drawn iron wires available in the bibliography.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700