Microwave-Assisted Polymer Modifications
详细信息    查看全文
  • 关键词:Carbon nanomaterials ; Microwave ; assisted synthesis ; Poly(ethylene imine) ; Polymer modification ; Polysaccharide ; Post ; polymerization modification
  • 刊名:Advances in Polymer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:274
  • 期:1
  • 页码:209-240
  • 全文大小:2,927 KB
  • 参考文献:1.Fang L, Han G, Zhang H (2015) Microwave-assisted free radical polymerizations. Adv Polym Sci. doi:10.​1007/​12_​2013_​276
    2.Fimberger M, Wiesbrock F (2015) Microwave-assisted synthesis of polyesters and polyamides by ring-opening polymerization. Adv Polym Sci. doi:10.​1007/​12_​2014_​293
    3.Luef KP, Hoogenboom R, Schubert US, Wiesbrock F (2015) Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. Adv Polym Sci. doi:10.​1007/​12_​2015_​340
    4.Mallakpour S, Zadehnazari A (2013) Microwave-assisted step-growth polymerizations (From polycondensation to C–C coupling). Adv Polym Sci. doi:10.​1007/​12_​2013_​275
    5.Reynaud S, Grassl B (2015) Microwave-assisted controlled radical polymerization. Adv Polym Sci. doi:10.​1007/​12_​2014_​302
    6.Ibrahim NA, Abou Elmaaty TM, Eid BM, Abd El-Aziz E (2013) Combined antimicrobial finishing and pigment printing of cotton/polyester blends. Carbohydr Polym 95:379–388CrossRef
    7.Jacquot C, Jacquot M, Marques P, Jasniewski J, Akhtar MJ, Didelot A-S, Desobry S (2014) Influence of microwave heating time on the structure and properties of chitosan films. J Appl Polym Sci 131:40779CrossRef
    8.Felix J, Gatenholm P, Schreiber HP (1994) Plasma modification of cellulose fibers – effects on some polymer composite properties. J Appl Polym Sci 51:285–295CrossRef
    9.Dinesh M, Chikkakuntappa R (2013) Microwave irradiation induced modifications on the interfaces in SAN/EVA/PVC and PVAc/BPA/PVP ternary polymer blends: positron lifetime study. Nucl Instrum Meth B 310:67–74CrossRef
    10.Manjula MK, Rai KML, Raj JM, Siddaramaiah CSM, Ranganathaiah C (2010) Microwave assisted improvement in physico-mechanical properties of poly(vinyl alcohol)/poly(ethylene imine)/gelatin blends. J Polym Res 17:89–98CrossRef
    11.Raj JM, Altaweel AMAM, Chandrashekara MN, Ramya P, Ravikumar HB, Ranganathaiah C (2011) An effective tool to characterize adhesion at the interface of binary polymer blends: a free volume study. J Polym Eng 31:93–96CrossRef
    12.Raj JM, Ranganathaiah C (2009) A new method of stabilization and characterization of the interface in binary polymer blends by irradiation: a positron annihilation study. J Polym Sci B Polym Phys 47:619–632CrossRef
    13.Raj JM, Ranganathaiah C, Ganesh S (2008) Interfacial modifications in PS/PMMA and PVC/EVA blends by e-beam and microwave irradiation: a free volume study. Polym Eng Sci 48:1495–1503CrossRef
    14.Mitra S, Chandra S, Kundu T, Banerjee R, Pramanik P, Goswami A (2012) Rapid microwave synthesis of fluorescent hydrophobic carbon dots. RSC Adv 2:12129–12131CrossRef
    15.Qin X, Lu W, Asiri AM, Al-Youbi AO, Sun X (2013) Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions. Sens Actuator B Chem 184:156–162CrossRef
    16.Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, Ye L (2014) One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 68:258–264CrossRef
    17.Wei W, Xu C, Wu L, Wang J, Ren J, Qu X (2014) Non-enzymatic
    owning-reaction: a versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display. Sci Rep 4:3564
    18.Bairi VG, Bourdo SE, Nasini UB, Ramasahayam SK, Watanabe F, Berry BC, Viswanathan T (2013) Microwave-assisted synthesis of nitrogen and phosphorus co-doped mesoporous carbon and their potential application in alkaline fuel cells. Sci Adv Mater 5:1275–1281CrossRef
    19.Harris AT, Deshpande S, Kefeng X (2009) Synthesis of graphitic carbon particle chains at low temperatures under microwave irradiation. Mater Lett 63:1390–1392CrossRef
    20.Schwenke AM, Hoeppener S, Schubert US (2015) Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv Mater 27:4113–4141CrossRef
    21.Zhang X, Liu Z (2012) Recent advances in microwave initiated synthesis of nanocarbon materials. Nanoscale 4:707–714CrossRef
    22.Zhang X, Manohar SK (2006) Microwave synthesis of nanocarbons from conducting polymers. Chem Commun 2477–2479
    23.Kim S-Y, Kim SY, Lee S, Jo S, Im Y-H, Lee H-S (2015) Microwave plasma carbonization for the fabrication of polyacrylonitrile-based carbon fiber. Polymer 56:590–595CrossRef
    24.Wang C, Ma D, Bao X (2008) Transformation of biomass into porous graphitic carbon nanostructures by microwave irradiation. J Phys Chem C 112:17596–17602CrossRef
    25.Xu Z, Li H, Li W, Cao G, Zhang Q, Li K, Fu Q, Wang J (2011) Large-scale production of graphene by microwave synthesis and rapid cooling. Chem Commun 47:1166–1168CrossRef
    26.Bello-Perez LA, Roger P, Baud B, Colonna P (1998) Macromolecular features of starches determined by aqueous high-performance size exclusion chromatography. J Cereal Sci 27:267–278CrossRef
    27.Klingler R, Busch KG, Vahedi B (1997) Acid modification of starch in a semi-dry process. Starch 49:391–395CrossRef
    28.Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424CrossRef
    29.Jaworska MM, Kozlecki T, Gorak A (2012) Review of the application of ionic liquids as solvents for chitin. J Polym Eng 32:67–69CrossRef
    30.Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971CrossRef
    31.Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol 160:129–141CrossRef
    32.Illy N, Robitzer M, Auvergne R, Caillol S, David G, Boutevin B (2014) Synthesis of water-soluble allyl-functionalized oligochitosan and its modification by thiol-ene addition in water. J Polym Sci Part A Polym Chem 52:39–48CrossRef
    33.Shao J, Yang Y, Zhong Q (2003) Studies on preparation of oligoglucosamine by oxidative degradation under microwave irradiation. Polym Degrad Stab 82:395–398CrossRef
    34.Sun T, Zhou D, Xie J, Mao F (2007) Preparation of chitosan oligomers and their antioxidant activity. Eur Food Res Technol 225:451–456CrossRef
    35.Zhou G, Yao W, Wang C (2006) Kinetics of microwave degradation of λ-carrageenan from Chondrus ocellatus. Carbohydr Polym 64:73–77CrossRef
    36.Tang F, Chen F, Li F (2013) Preparation and potential in vivo anti-influenza virus activity of low molecular-weight kappa-carrageenans and their derivatives. J Appl Polym Sci 127:2110–2115CrossRef
    37.Lukasiewicz M, Kowalski S (2012) Low power microwave-assisted enzymatic esterification of starch. Starch 64:188–197CrossRef
    38.Koroskenyi B, McCarthy S (2002) Microwave-assisted solvent-free or aqueous-based synthesis of biodegradable polymers. J Polym Environ 10:93–104CrossRef
    39.Shogren RL, Biswas A (2006) Preparation of water-soluble and water-swellable starch acetates using microwave heating. Carbohyd Polym 64:16–21CrossRef
    40.Soetaredjo FE, Ismadji S, Huynh LH, Kasim NS, Tran-Thi NY, Ayucitra A, Ju Y-H (2012) Facile preparation of sago starch esters using full factorial design of experiment. Starch 64:590–597CrossRef
    41.Possidonio S, Fidale LC, El Seoud OA (2010) Microwave-assisted derivatization of cellulose in an ionic liquid: an efficient, expedient synthesis of simple and mixed carboxylic esters. J Polym Sci A Polym Chem 48:134–143CrossRef
    42.Li J, Zhang L-P, Peng F, Bian J, Yuan T-Q, Xu F, Sun R-C (2009) Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 14:3551CrossRef
    43.Calce E, Bugatti V, Vittoria V, De Luca S (2012) Solvent-free synthesis of modified pectin compounds promoted by microwave irradiation. Molecules 17:12234–12242CrossRef
    44.Čížová A, Sroková I, Sasinková V, Malovíková A, Ebringerová A (2008) Carboxymethyl starch octenylsuccinate: microwave- and ultrasound-assisted synthesis and properties. Starch 60:389–397CrossRef
    45.Xu F, Jiang J-X, Sun R-C, She D, Peng B, Sun J-X, Kennedy JF (2008) Rapid esterification of wheat straw hemicelluloses induced by microwave irradiation. Carbohydr Polym 73:612–620CrossRef
    46.Ren J-L, Xu F, Sun R-C, Peng B, Sun J-X (2008) Studies of the lauroylation of wheat straw hemicelluloses under heating. J Agric Food Chem 56:1251–1258CrossRef
    47.Suchaiya V, Aht-Ong D (2014) Microwave-assisted modification of cellulose as a compatibilizer for PLA and MCC biocomposite film: effects of side chain length and content on mechanical and thermal properties. Polym Polym Compos 22:613–624
    48.Aime S, Gianolio E, Uggeri F, Tagliapietra S, Barge A, Cravotto G (2006) New paramagnetic supramolecular adducts for MRI applications based on non-covalent interactions between Gd(III)-complexes and beta- or gamma-cyclodextrin units anchored to chitosan. J Inorg Biochem 100:931–938CrossRef
    49.Chaudhary JP, Kondaveeti S, Gupta V, Prasad K, Meena R (2014) Preparation and functional evaluation of agarose derivatives. J Appl Polym Sci 131:40630
    50.Peng X-W, Ren J-L, Zhong L-X, Cao X-F, Sun R-C (2011) Microwave-induced synthesis of carboxymethyl hemicelluloses and their rheological properties. J Agric Food Chem 59:570–576CrossRef
    51.Kondaveeti S, Mehta GK, Siddhanta AK (2014) Modification of agarose: 6-aminoagarose mediated syntheses of fluorogenic pyridine carboxylic acid amides. Carbohydr Polym 106:365–373CrossRef
    52.Sardo C, Farra R, Licciardi M, Dapas B, Scialabba C, Giammona G, Grassi M, Grassi G, Cavallaro G (2015) Development of a simple, biocompatible and cost-effective inulin-diethylenetriamine based siRNA delivery system. Eur J Pharm Sci 75:60–71CrossRef
    53.Liu L, Li Y, Li Y, Fang Y-E (2004) Rapid N-phthaloylation of chitosan by microwave irradiation. Carbohydr Polym 57:97–100CrossRef
    54.Petit C, Reynaud S, Desbrieres J (2015) Amphiphilic derivatives of chitosan using microwave irradiation. Toward an eco-friendly process to chitosan derivatives. Carbohydr Polym 116:26–33CrossRef
    55.Radwan AA, Alanazi FK, Alsarra IA (2010) Microwave irradiation-assisted synthesis of a novel crown ether crosslinked chitosan as a chelating agent for heavy metal ions (M + n). Molecules 15:6257CrossRef
    56.Ge H, Huang S (2010) Microwave preparation and adsorption properties of EDTA-modified cross-linked chitosan. J Appl Polym Sci 115:514–519CrossRef
    57.Cao Z, Ge H, Lai S (2001) Studies on synthesis and adsorption properties of chitosan cross-linked by glutaraldehyde and Cu(II) as template under microwave irradiation. Eur Polym J 37:2141–2143CrossRef
    58.Mondal K, Mehta P, Gupta MN (2004) Affinity precipitation of Aspergillus niger pectinase by microwave-treated alginate. Protein Expr Purif 33:104–109CrossRef
    59.Diaz-Visurraga J, Daza C, Pozo C, Becerra A, von Plessing C, Garcia A (2012) Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy. Int J Nanomedicine 7:3597–3612CrossRef
    60.Chhatbar MU, Meena R, Prasad K, Chejara DR, Siddhanta AK (2011) Microwave-induced facile synthesis of water-soluble fluorogenic alginic acid derivatives. Carbohydr Res 346:527–533CrossRef
    61.Sanandiya ND, Siddhanta AK (2013) Facile synthesis of a new fluorogenic metal scavenging interpolymeric diamide based on cellulose and alginic acids. Carbohydr Res 381:93–100CrossRef
    62.Grabowska B, Sitarz M, Olejnik E, Kaczmarska K (2015) FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch – part I. Spectrochim Acta A 135:529–535CrossRef
    63.Tomanová V, Pielichowski K, Sroková I, Žoldaková A, Sasinková V, Ebringerová A (2008) Microwave-assisted synthesis of carboxymethylcellulose – based polymeric surfactants. Polym Bull 60:15–25CrossRef
    64.Singh V, Kumar P, Sanghi R (2012) Use of microwave irradiation in the grafting modification of the polysaccharides - a review. Prog Polym Sci 37:340–364CrossRef
    65.Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425CrossRef
    66.Feng L, Zhou Z, Dufresne A, Huang J, Wei M, An L (2009) Structure and properties of new thermoforming bionanocomposites based on chitin whisker-graft-polycaprolactone. J Appl Polym Sci 112:2830–2837CrossRef
    67.Liu L, Li Y, Fang Y, Chen LX (2005) Microwave-assisted graft copolymerization of epsilon-caprolactone onto chitosan via the phthaloyl protection method. Carbohydr Polym 60:351–356CrossRef
    68.Das R, Das D, Ghosh P, Ghosh A, Dhara S, Panda AB, Pal S (2015) Novel pH-responsive graft copolymer based on HPMC and poly(acrylamide) synthesised by microwave irradiation: application in controlled release of ornidazole. Cellulose 22:313–327CrossRef
    69.Meenkashi, Ahuja M, Verma P (2014) MW-assisted synthesis of carboxymethyl tamarind kernel polysaccharide-g-polyacrylonitrile: optimization and characterization. Carbohyd Polym 113:532–538
    70.Yiğitoğlu M, Aydın G, Işıklan N (2014) Microwave-assisted synthesis of alginate-g-polyvinylpyrrolidone copolymer and its application in controlled drug release. Polym Bull 71:385–414CrossRef
    71.Kalia S, Sheoran R (2011) Modification of ramine fibers using microwave-assisted and cellulase enzyme-assisted biopolishing: a comparative study of morphology, thermal stability, and crystallinity. Int J Polym Anal Ch 16:307–318CrossRef
    72.Kalia S, Vashistha S (2012) Surface modification of sisal fibers (Agave sisalana) using bacterial cellulase and methyl methacrylate. J Polym Environ 20:142–151CrossRef
    73.Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25CrossRef
    74.Sorour MH, El Sayed MM, Abd El Moneem NM, Talaat HA, Shaalan HF, El Marsafy SM (2013) Process and financial considerations pertinent to hydrogel manufacture. Starch 65:527–534CrossRef
    75.Sorour M, El-Sayed M, Abd El Moneem N, Talaat HA, Shalaan H, El Marsafy S (2013) Characterization of hydrogel synthesized from natural polysaccharides blend grafted acrylamide using microwave (MW) and ultraviolet (UV) techniques. Starch 65:172–178CrossRef
    76.Wei X, Chang G, Li J, Wang F, Cui L, Fu T, Kong L (2014) Preparation of pH- and salinity-responsive cellulose copolymer in ionic liquid. J Polym Res 21:535CrossRef
    77.Likhitha M, Sailaja RRN, Priyambika VS, Ravibabu MV (2014) Microwave assisted synthesis of guar gum grafted sodium acrylate/cloisite superabsorbent nanocomposites: reaction parameters and swelling characteristics. Int J Biol Macromol 65:500–508CrossRef
    78.Mallakpour SE, Hajipour AR, Mahdavian AR, Zadhoush A, Ali-Hosseini F (2001) Microwave assisted oxidation of polyethylene under solid-state conditions with potassium permanganate. Eur Polym J 37:1199–1206CrossRef
    79.Sulkowski WW, Wolinska A, Sulkowska A, Nowak K, Bogdal D (2008) Sulphonation of expanded polystyrene waste under microwave irradiation. E Polymers 7:65–71
    80.Monteil C, Bar N, Moreau B, Retoux R, Bee A, Talbot D, Villemin D (2014) Phosphonated polyethylenimine-coated nanoparticles: size- and zeta-potential-adjustable nanomaterials. Part Part Syst Charact 31:219–227CrossRef
    81.Arslan M, Gok O, Sanyal R, Sanyal A (2014) Clickable poly(ethylene glycol)-based copolymers using azide-alkyne click cycloaddition-mediated step-growth polymerization. Macromol Chem Phys 215:2237–2247CrossRef
    82.Huy HT, Buu TN, Dung TTK, Han TN, VanQuang P (1996) Fixation of alpha-naphthyl acetic acid onto epoxidized liquid natural rubber in microwave reactor (monomode system). J Macromol Sci Pure Appl Chem 1957–1962
    83.Hurduc N, Buisine JM, Decock P, Talewee J, Surpateanu G (1996) Influence of microwaves irradiation on modification of oxetane based polymers with 4-(2-amino-ethyl)morpholine. Polym J 28:550–552CrossRef
    84.Baudel V, Cazier F, Woisel P, Surpateanu G (2002) Synthesis and modification of oxetane based oligomers with 3-ethoxypropylamine by focused microwave irradiation. Eur Polym J 38:615–618CrossRef
    85.Kretschmann O, Schmitz S, Ritter H (2007) Microwave-assisted synthesis of associative hydrogels. Macromol Rapid Commun 28:1265–1269CrossRef
    86.Bezdushna E, Ritter H (2007) Microwave-assisted esterification of methacrylic acid and polymer-analogous esterification of poly[ethylene-co-(acrylic acid)] with dissimilar phenols. Macromol Rapid Commun 28:443–448CrossRef
    87.Sinnwell S, Ritter H (2007) Microwave assisted hydroxyalkylamidation of poly(ethylene-co-acrylic acid) and formation of grafted poly(ϵ-caprolactone) side chains. J Polym Sci A Polym Chem 45:3659–3667CrossRef
    88.Bezdushna E, Ritter H (2008) Microwave promoted polymer analogous amidation and esterification of poly(ether sulfone) bearing free carboxylic groups. Macromol Chem Phys 209:1942–1947CrossRef
    89.Dickmeis M, Ritter H (2009) Microwave-assisted modification of poly(vinylimidazolium salts) via N, N-dimethylformamide decomposition. Macromol Chem Phys 210:776–782CrossRef
    90.Lamanna M, D'Accorso N (2011) New copolymers with heterocyclic pendant groups obtained from PVC using microwave-assisted process. J Appl Polym Sci 121:951–956CrossRef
    91.Chen ZX, Xu GY, Yang GC, Wang W (2004) Preparation of non-cross-linked polystyrene-supported quaternary ammonium salts and use as phase transfer catalysts under microwave. React Funct Polym 61:139–146CrossRef
    92.Cook JP, Goodall GW, Khutoryanskaya OV, Khutoryanskiy VV (2012) Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol Rapid Commun 33:332–336CrossRef
    93.Englert C, Tauhardt L, Hartlieb M, Kempe K, Gottschaldt M, Schubert US (2014) Linear poly(ethylene imine)-based hydrogels for effective binding and release of DNA. Biomacromolecules 15:1124–1131CrossRef
    94.Rinkenauer AC, Vollrath A, Schallon A, Tauhardt L, Kempe K, Schubert S, Fischer D, Schubert US (2013) Parallel high-throughput screening of polymer vectors for nonviral gene delivery: evaluation of structure–property relationships of transfection. ACS Comb Sci 15:475–482CrossRef
    95.Lambermont-Thijs HM, van der Woerdt FS, Baumgaertel A, Bonami L, Du Prez FE, Schubert US, Hoogenboom R (2009) Linear poly (ethylene imine)s by acidic hydrolysis of poly(2-oxazoline)s: kinetic screening, thermal properties, and temperature-induced solubility transitions. Macromolecules 43:927–933CrossRef
    96.Tauhardt L, Kempe K, Knop K, Altuntas E, Jaeger M, Schubert S, Fischer D, Schubert US (2011) Linear polyethyleneimine: optimized synthesis and characterization - on the way to “pharmagrade” batches. Macromol Chem Phys 212:1918–1924
    97.de la Rosa VR, Bauwens E, Monnery BD, De Geest BG, Hoogenboom R (2014) Fast and accurate partial hydrolysis of poly(2-ethyl-2-oxazoline) into tailored linear polyethylenimine copolymers. Polym Chem 5:4957–4964CrossRef
    98.Lambermont-Thijs HML, Heuts JPA, Hoeppener S, Hoogenboom R, Schubert US (2011) Selective partial hydrolysis of amphiphilic copoly(2-oxazoline)s as basis for temperature and pH responsive micelles. Polym Chem 2:313–322CrossRef
    99.van Kuringen HPC, de la Rosa VR, Fijten MWM, Heuts JPA, Hoogenboom R (2012) Enhanced selectivity for the hydrolysis of block copoly(2-oxazoline)s in ethanol–water resulting in linear poly(ethylene imine) copolymers. Macromol Rapid Commun 33:827–832CrossRef
    100.Kelly AM, Kaltenhauser V, Mühlbacher I, Rametsteiner K, Kren H, Slugovc C, Stelzer F, Wiesbrock F (2013) Poly(2-oxazoline)-derived contact biocides: contributions to the understanding of antimicrobial activity. Macromol Biosci 13:116–125CrossRef
    101.Tauhardt L, Frant M, Pretzel D, Hartlieb M, Bucher C, Hildebrand G, Schroter B, Weber C, Kempe K, Gottschaldt M, Liefeith K, Schubert US (2014) Amine end-functionalized poly(2-ethyl-2-oxazoline) as promising coating material for antifouling applications. J Mater Chem B 2:4883–4893CrossRef
    102.Weber C, Czaplewska JA, Baumgaertel A, Altuntas E, Gottschaldt M, Hoogenboom R, Schubert US (2012) A sugar decorated macromolecular bottle brush by carbohydrate-initiated cationic ring-opening polymerization. Macromolecules 45:46–55CrossRef
    103.Chen C-H, Tung C-L, Sun C-M (2012) Microwave-assisted synthesis of highly functionalized guanidines on soluble polymer support. Tetrahedron Lett 53:3959–3962CrossRef
    104.Van Hove AH, Wilson BD, Benoit DSW (2013) Microwave-assisted functionalization of poly(ethylene glycol) and on-resin peptides for use in chain polymerizations and hydrogel formation. J Vis Exp 80, e50890
    105.Glisoni RJ, Sosnik A (2014) Novel poly(ethylene oxide)-b-poly(propylene oxide) copolymer-glucose conjugate by the microwave-assisted ring opening of a sugar lactone. Macromol Biosci 14:1639–1651CrossRef
    106.Wu H, Li F, Lin Y, Yang M, Chen W, Cai R (2006) Synthesis of telechelic C60 end-capped polymers under microwave irradiation. J Appl Polym Sci 99:828–834CrossRef
    107.Ouhib F, Desbief S, Lazzaroni R, De Winter J, Gerbaux P, Jerome C, Detrembleur C (2012) Thermally induced coupling of poly(thiophene)-based block copolymers prepared by Grignard metathesis polymerization: a straightforward route toward highly regioregular multiblock conjugated copolymers. Macromolecules 45:6796–6806CrossRef
    108.Hoogenboom R, Moore BC, Schubert US (2006) Synthesis of star-shaped poly(ε-caprolactone) via “click” chemistry and “supramolecular click” chemistry. Chem Commun 4010–4012
    109.Haensch C, Erdmenger T, Fijten MWM, Hoeppener S, Schubert US (2009) Fast surface modification by microwave assisted click reactions on silicon substrates. Langmuir 25:8019–8024CrossRef
    110.Gloecklhofer F, Lumpi D, Kohlstaedt M, Yurchenko O, Wuerfel U, Froehlich J (2015) Towards continuous junction (CJ) organic electronic devices: fast and clean post-polymerization modification by oxidation using dimethyldioxirane (DMDO). React Funct Polym 86:16–26CrossRef
    111.Gloecklhofer F, Lumpi D, Stoeger B, Froehlich J (2014) Multigram synthesis of bis (trimethylsilyl)ethynyl benzenes suitable for post-polymerization modification. New J Chem 38:2229–2232CrossRef
    112.Malkoch M, Schleicher K, Drockenmuller E, Hawker CJ, Russell TP, Wu P, Fokin VV (2005) Structurally diverse dendritic libraries: a highly efficient functionalization approach using click chemistry. Macromolecules 38:3663–3678CrossRef
    113.Rijkers DTS, van Esse GW, Merkx R, Brouwer AJ, Jacobs HJF, Pieters RJ, Liskamp RMJ (2005) Efficient microwave-assisted synthesis of multivalent dendrimeric peptides using cycloaddition reaction (click) chemistry. Chem Commun 4581–4583
    114.Trellenkamp T, Ritter H (2010) Poly(N-vinylpyrrolidone) bearing covalently attached cyclodextrin via click-chemistry: synthesis, characterization, and complexation behavior with phenolphthalein. Macromolecules 43:5538–5543CrossRef
    115.Liu X, Zheng H-N, Ma Y-Z, Yan Q, Xiao S-J (2011) Microwave irradiated click reactions on silicon surfaces via derivertization of covalently grafted poly(PEGMA) brushes. J Colloid Interface Sci 358:116–122CrossRef
    116.Yaylayan VA, Siu M, Belanger JMR, Pare JRJ (2002) Microwave-assisted PEGylation of Merrifield resins. Tetrahedron Lett 43:9023–9025CrossRef
    117.Pilsniak M, Trochimczuk AW (2007) Synthesis and characterization of polymeric resins with aliphatic and aromatic amino ligands and their sorption behavior towards gold from ammonium hydroxide solutions. React Funct Polym 67:1570–1576CrossRef
    118.Wolska J, Bryjak M (2011) Preparation of polymeric microspheres for removal of boron by means of sorption-membrane filtration hybrid. Desalination 283:193–197CrossRef
    119.Matsushita T, Hinou H, Kurogochi M, Shimizu H, Nishimura S-I (2005) Rapid microwave-assisted solid-phase glycopeptide synthesis. Org Lett 7:877–880CrossRef
    120.Izumi R, Matsushita T, Fujitani N, Naruchi K, Shimizu H, Tsuda S, Hinou H, Nishimura S-I (2013) Microwave-assisted solid-phase synthesis of antifreeze glycopeptides. Chem Eur J 19:3913–3920CrossRef
    121.Matsushita T, Hinou H, Fumoto M, Kurogochi M, Fujitani N, Shimizu H, Nishimura S-I (2006) Construction of highly glycosylated mucin-type glycopeptides based on microwave-assisted solid-phase syntheses and enzymatic modifications. J Org Chem 71:3051–3063CrossRef
  • 作者单位:Christoph Englert (22) (23)
    Almut M. Schwenke (22) (23)
    Stephanie Hoeppener (22) (23)
    Christine Weber (22) (23)
    Ulrich S. Schubert (22) (23)

    22. Laboratory for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
    23. Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
  • 丛书名:Microwave-assisted Polymer Synthesis
  • ISBN:978-3-319-42241-1
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-5030
  • 卷排序:274
文摘
Modern microwave synthesizers allow a detailed adjustment and control of temperature and power, such that many polymer modification reactions are performed nowadays using established synthesis protocols. This chapter provides a broad overview of post-polymerization modification reactions where these advantages are exploited for functionalization of synthetic and natural polymers. Selected examples are discussed in detail to demonstrate the versatility of the technique but also to address the challenges of screening approaches often applied to identify the optimum reaction conditions. While microwave synthesizers are regarded as efficient heating devices in the field of synthetic chemistry, selective heating of, for example, conjugated polymers has opened non-standard opportunities for the development of novel nanomaterials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700