Thermal curing of an epoxy-anhydride system modified with hyperbranched poly(ethylene imine)s with different terminal groups
详细信息    查看全文
  • 作者:J. M. Morancho ; X. Fernández-Francos…
  • 关键词:Epoxy networks ; Thermal curing ; Hyperbranched polymers ; Kinetics
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:127
  • 期:1
  • 页码:645-654
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Physical Chemistry; Analytical Chemistry; Polymer Sciences; Inorganic Chemistry; Measurement Science and Instrumentation;
  • 出版者:Springer Netherlands
  • ISSN:1588-2926
  • 卷排序:127
文摘
New hyperbranched polymers (HBP) have been synthesized by reaction of a poly(ethylene imine) with phenyl and t-butyl isocyanates. These HBPs have been characterized by 1H-NMR (nuclear magnetic resonance of hydrogen) and Fourier transform infrared spectroscopy. Their influence on the curing and properties of epoxy-anhydride thermosets has been studied by different techniques: differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermogravimetry (TG). The curing kinetics has been studied with DSC. Integral isoconversional method and the Šesták–Berggren model have been used to determine the activation energy and the frequency factor. The kinetic parameters are very similar for all the studied systems at the middle stage of the process, but changes are observed at the beginning and at the end of the process when these modifiers are used. The HBPs reduce the glass transition temperature of the cured materials. In addition, from the DMA analysis it can be seen that the HBP modifier obtained from phenyl isocyanate hardly changes the storage modulus, but the obtained ones from t-butyl isocyanate decrease it. TG analysis reveals a decrease in the onset temperature of the degradation process upon addition of the HBPs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700