Poly(ethylene oxide)/graphene oxide nanocomposites: structure, properties and shape memory behavior
详细信息    查看全文
  • 作者:Young-Wook Chang ; Kang-Suk Lee ; Yong-Woo Lee ; Jin Ho Bang
  • 刊名:Polymer Bulletin
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:72
  • 期:8
  • 页码:1937-1948
  • 全文大小:851 KB
  • 参考文献:1.Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906-924View Article
    2.Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183-91View Article
    3.Compton OC, Nguyen SBT (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711-23View Article
    4.Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem 113:9921-927
    5.Yousefi N, Gudarzi MM, Zheng Q, Lin X, Shen X, Jia J, Sharif F, Kim JK (2013) Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Composites Part A Appl Sci Manfact 49:42-0View Article
    6.Zhang J, Qiu Z (2011) Morphology, crystallization behavior, and dynamic mechanical properties of biodegradable poly(ε-caprolactone)/thermally reduced graphene nanocomposites. Ind Eng Chem Res 50:13885-3891View Article
    7.Kuila T, Khanra P, Mishra AK, Kim NH, Lee JH (2012) Functionalized-graphene/ethylene vinyl acetate copolymer composites for improved mechanical and thermal properties. Polym Testing 31:282-89View Article
    8.Choi BG, Huh YS, Park YC, Jung DH, Hong WH, Park HS (2012) Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets. Carbon 50:5395-402View Article
    9.Yang X, Tu Y, Li L, Shang S, Tao XM (2010) Well-dispersed chitosan/graphene oxide nanocomposites. Appl Mater Interf 2:1707-713View Article
    10.Pan Y, Wu T, Bao H, Li L (2011) Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohy Polym 83:1908-915View Article
    11.Wang Y, Shi Z, Yu J, Chen L, Zhu J, Hu Z (2012) Tailoring the characteristics of graphite oxide nanosheets for the production of high-performance poly(vinyl alcohol) composites. Carbon 50:5525-536View Article
    12.Qi X, Yao X, Deng S, Zhou T, Fu Q (2014) Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites. J Mater Chem A 2:2240-249View Article
    13.Morimune S, Nishino T, Goto T (2012) Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polym J 44:1056-063View Article
    14.Zhao X, Zhang Q, Chen D (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357-363View Article
    15.Satti A, Larpent P, Gun’ko Y (2010) Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking. Carbon 48:3376-381View Article
    16.Liu R, Liang S, Tang XZ, Yan D, Li X, Yu ZZ (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22:14160-4167View Article
    17.Alcantar NA, Aydil ES, Israelachvili JN (2000) Polyethylene glycol-coated biocompatible surfaces. J Biomed Mater Res 51:343-51View Article
    18.Yang XQ, Hanson L, McBreen J, Okamoto Y (1995) Development of a new plasticizer for poly(ethylene oxide)-based polymer electrolyte and the investigation of their ion-pair dissociation effect. J Power Sour 54:198-04View Article
    19.Mishra R, Rao KJ (1998) Electrical conductivity studies of poly(ethyleneoxide)-poly(vinylalcohol) blends. Solid State Ionics 106:113-27View Article
    20.Ratna D, Divekar S, Samui AB, Chakraborty BC, Banthia AK (2006) Poly(ethylene oxide)/clay nanocomposite: thermomechanical properties and morphology. Polymer 47:4068-074View Article
    21.Abraham TN, Siengchin S, Ratna D, Karger-Kocsis J (2010) Effect of modified layered silicates on the confined crystalline morphology and thermomechanical properties of poly(ethylene oxide) nanocomposites. J Appl Polym Sci 118:1297-305
    22.Burgaz E (2011) Poly(ethylene-oxide)/clay/silica nanocomposites: morphology and thermomechanical properties. Polymer 52:5118-126View Article
    23.Azizi Samir MAS, Alloin F, Sanchez JY, Dufresne A (2004) Cellulose nanocrystals reinforced poly(oxythyene). Polymer 45:4149-157View Article
    24.Azizi Samir MAS, Chazeau L, Alloin F, Cavaille JY, Dufresne A, Sanchez JY (2005) POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers. Electrochmica Acta 50:3897-903View Article
    25.Narh KA, Jallo L, Rhee KY (2008) The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide. Polym Comp 29:809-17View Article
    26.Abraham TN, Ratna D, Siengchin S, Karger-Kocsis J (2008) Rheological and thermal properties of poly(ethylene oxide)/multiwalled carbon nanotube composites. J Appl Polym Sci 110:2094-101View Article
    27.Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435-0442View Article
    28.Wang M, Luo X, Ma D (1998) Dynamic mechanical behavior in the ethylene terephth
  • 作者单位:Young-Wook Chang (1)
    Kang-Suk Lee (1)
    Yong-Woo Lee (2)
    Jin Ho Bang (2)

    1. Department of Chemical Engineering, Polymer Nano Materials Laboratory, Hanyang University, Ansan, Kyunggi-Do, Korea
    2. Department of Chemistry and Applied Chemistry, Hanyang University, Ansan, Kyunggi-Do, Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Characterization and Evaluation Materials
    Soft Matter and Complex Fluids
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-2449
文摘
Poly(ethylene oxide) (PEO)/graphene oxide (GO) nanocomposites with GO contents of 1, 3, 5 and 7?wt% were prepared by solution mixing followed by film casting. Field-emission scanning electron microscopy observations showed that the GO nanosheets are dispersed uniformly in the PEO matrix. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis of the nanocomposites revealed that there are hydrogen-bonded interactions between surface carboxylic acid on the GO sheets and ether group of the PEO. Differential scanning calorimetry (DSC), tensile testing, and dynamic mechanical analysis (DMA) showed that, with increasing GO content in the nanocomposites, the melting temperature and degree of crystallinity decreased while glass transition temperature, tensile modulus, strength and elongation-at-break concurrently increased. DMA results also demonstrated the presence of a rubbery plateau above the melting temperature of the PEO/GO nanocomposites, and the moduli at the plateau region increased with increasing GO content in the nanocomposites, implying that the PEO/GO nanocomposites formed a physically crosslinked structure. PEO/GO nanocomposites with GO contents higher than 5?wt% exhibited excellent thermally and infrared-triggered shape memory behavior.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700