High-efficiency grafting of halloysite nanotubes by using π-conjugated polyfluorenes via “click-chemistry
详细信息    查看全文
  • 作者:Hailei Zhang ; Xiaoyan Zhu ; Yonggang Wu ; Hongzan Song…
  • 刊名:Journal of Materials Science
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:50
  • 期:12
  • 页码:4387-4395
  • 全文大小:1,220 KB
  • 参考文献:1.Dasgupta D, Shishmanova IK, Ruiz-Carretero A et al (2013) Patterned silver nanoparticles embedded in a nanoporous smectic liquid crystalline polymer network. J Am Chem Soc 135:10922-0925View Article
    2.Opanasenko M, Parker WON, Shamzhy M et al (2014) Hierarchical hybrid organic-inorganic materials with tunable textural properties obtained using zeolitic-layered precursor. J Am Chem Soc 136:2511-519View Article
    3.Xia X, Chao D, Qi X et al (2013) Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties. Nano Lett 13:4562-568View Article
    4.Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061-105View Article
    5.Lvov YM, Shchukin DG, Mohwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814-20View Article
    6.Abdullayev E, Sakakibara K, Okamoto K, Wei W, Ariga K, Lvov Y (2011) Natural tubule clay template synthesis of silver nanorods for antibacterial composite coating. ACS Appl Mater Inter 3:4040-046View Article
    7.Fu XB, Ding Z, Zhang X et al (2014) Preparation of halloysite nanotube-supported gold nanocomposite for solvent-free oxidation of benzyl alcohol. Nanoscale Res Lett 9:282-85View Article
    8.Li C, Li X, Duan X, Li G, Wang J (2014) Halloysite nanotube supported Ag nanoparticles heteroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres. J Colloid Interface Sci 436:70-6View Article
    9.Abdullayev E, Price R, Shchukin D, Lvov Y (2009) Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Appl Mater Interfaces 1:1437-443View Article
    10.Lu F, Gu L, Meziani MJ et al (2009) Advances in bioapplications of carbon nanotubes. Adv Mater 21:139-52View Article
    11.Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28:4880-888View Article
    12.Lun H, Ouyang J, Yang H (2014) Natural halloysite nanotubes modified as an aspirin carrier. RSC Adv 4:44197-4202View Article
    13.Lee Y, Jung G-E, Cho SJ, Geckeler KE, Fuchs H (2013) Cellular interactions of doxorubicin-loaded DNA-modified halloysite nanotubes. Nanoscale 5:8577-585View Article
    14.Pan J, Yao H, Xu L et al (2011) Selective recognition of 2,4,6-trichlorophenol by molecularly imprinted polymers based on magnetic halloysite nanotubes composites. J Phy Chem C 115:5440-449View Article
    15.Kim SW, Kim T, Kim YS et al (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3-3View Article
    16.Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39:1498-525View Article
    17.Li Z, Kulkarni SA, Boix PP et al (2014) Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8:6797-804View Article
    18.Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23:646-57View Article
    19.Eder D (2010) Carbon nanotube-inorganic hybrids. Chem Rev 110:1348-385View Article
    20.Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366-397View Article
    21.Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837-67View Article
    22.Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357-01View Article
    23.Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574-82
    24.Rawtani D, Agrawal YK (2012) Multifarious application of holloysite nanotubes: a review. Rev Adv Mater Sci 30:282-95
    25.Yang S, Liu Z, Jiao Y, Liu Y, Ji C, Zhang Y (2014) New insight into PEO modified inner surface of HNTs and its nano-confinement within nanotube. J Mater Sci 49:4270-278. doi:10.-007/?s10853-014-8122-6 View Article
    26.Alhuthali A, Low IM (2013) Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Mater Sci 48:4260-273. doi:10.-007/?s10853-013-7240-x View Article
    27.Yah WO, Xu H, Soejima H, Ma W, Lvov Y, Takahara A (2012) Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. J Am Chem Soc 134:12134-2137View Article
    28.Yuan P, Southon PD, Liu Z et al (2008) Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J Phy Chem C 112:15742-5751View Article
    29
  • 作者单位:Hailei Zhang (1) (2)
    Xiaoyan Zhu (1) (2)
    Yonggang Wu (1) (2)
    Hongzan Song (1) (2)
    Xinwu Ba (1) (2)

    1. College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China
    2. Key Laboratory of Medical Chemistry and Molecular Diagnosis, Ministry of Education, Baoding, 071002, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
New hybrid halloysite nanotubes (HNTs) were obtained by grafting conjugated polyfluorenes (PFs) onto the surface via “click-chemistry. The hybrid material can be dispersed in organic solvent such as dichloromethane, and exhibits intense blue emission peaked at 448?nm. The absorption and emission spectra of the HNTs show distinct bathochromic shifts compared to PFs, which can be attributed to the extended π-conjugation as a result of the cycloaddition of azide and alkyne groups. The changes of the spectra also show that the PFs were grafted onto the HNTs through chemical bonds. Thermal gravimetric analyzer data show one more significant result, the grafting degree of the HNTs is 150?%, which means that a high mass ratio of PF polymers was grafted onto the HNTs. Furthermore, characterizations by infrared, nuclear magnetic resonance, and X-ray photoelectron spectroscopy also support the conclusion. The combination of HNTs with conjugated polymers will lead to a new generation of donor–acceptor nanohybrid materials which are promising in application in photoelectric fields.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700