A compactness result for polyharmonic maps in the critical dimension
详细信息    查看全文
  • 作者:Shenzhou Zheng
  • 关键词:polyharmonic map ; compactness ; Coulomb moving frame ; Palais ; Smale sequence ; removable singularity
  • 刊名:Czechoslovak Mathematical Journal
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:66
  • 期:1
  • 页码:137-150
  • 全文大小:169 KB
  • 参考文献:[1] G. Angelsberg, D. Pumberger: A regularity result for polyharmonic maps with higher integrability. Ann. Global Anal. Geom. 35 (2009), 63–81.MathSciNet CrossRef MATH
    [2] F. Bethuel: Weak limits of Palais-Smale sequences for a class of critical functionals. Calc. Var. Partial Differ. Equ. 1 (1993), 267–310.MathSciNet CrossRef MATH
    [3] A. Freire, S. Müller, M. Struwe: Weak compactness of wave maps and harmonic maps. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998), 725–754.MathSciNet CrossRef MATH
    [4] A. Gastel: The extrinsic polyharmonic map heat flow in the critical dimension. Adv. Geom. 6 (2006), 501–521.MathSciNet CrossRef MATH
    [5] A. Gastel, C. Scheven: Regularity of polyharmonic maps in the critical dimension. Commun. Anal. Geom. 17 (2009), 185–226.MathSciNet CrossRef MATH
    [6] P. Goldstein, A. Strzelecki, A. Zatorska-Goldstein: On polyharmonic maps into spheres in the critical dimension. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009), 1387–1405.MathSciNet CrossRef MATH
    [7] F. Hélein: Regularity of weakly harmonic maps between a surface and a Riemannian manifold. C. R. Acad. Sci., Paris, Sér. (1) 312 (1991), 591–596. (In French.)MATH
    [8] T. Lamm, T. Rivière: Conservation laws for fourth order systems in four dimensions. Commun. Partial Differ. Equations 33 (2008), 245–262.MathSciNet CrossRef MATH
    [9] P. Laurain, T. Rivière: Energy quantization for biharmonic maps. Adv. Calc. Var. 6 (2013), 191–216.MathSciNet CrossRef MATH
    [10] P. -L. Lions: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1 (1985), 145–201.MathSciNet CrossRef MATH
    [11] P. -L. Lions: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Mat. Iberoam. 1 (1985), 45–121.MathSciNet CrossRef MATH
    [12] L. Mou, C. Wang: Bubbling phenomena of Palais-Smale-like sequences of m-harmonic type systems. Calc. Var. Partial Differ. Equ. 4 (1996), 341–367.MathSciNet CrossRef MATH
    [13] T. Rivière: Conservation laws for conformally invariant variational problems. Invent. Math. 168 (2007), 1–22.MathSciNet CrossRef MATH
    [14] J. Sacks, K. Uhlenbeck: The existence of minimal immersions of 2-spheres. Ann. Math. (2) 113 (1981), 1–24.MathSciNet CrossRef MATH
    [15] P. Strzelecki: On biharmonic maps and their generalizations. Calc. Var. Partial Differ. Equ. 18 (2003), 401–432.MathSciNet CrossRef MATH
    [16] P. Strzelecki, A. Zatorska-Goldstein: A compactness theorem for weak solutions of higher-dimensional H-systems. Duke Math. J. 121 (2004), 269–284.MathSciNet CrossRef MATH
    [17] L. Tartar: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 1 (1998), 479–500.MathSciNet MATH
    [18] K. K. Uhlenbeck: Connections with L p bounds on curvature. Commun. Math. Phys. 83 (1982), 31–42.MathSciNet CrossRef MATH
    [19] C. Wang: A compactness theorem of n-harmonic maps. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 509–519.MathSciNet CrossRef MATH
    [20] S. Zheng: Weak compactness of biharmonic maps. Electron. J. Differ. Equ. (electronic only) 2012 (2012), Article No. 190, 7 pages.
  • 作者单位:Shenzhou Zheng (1)

    1. Department of Mathematics, Beijing Jiaotong University, No. 3 Shangyuancun, Haidian, Beijing, 100044, China
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematics
    Analysis
    Convex and Discrete Geometry
    Ordinary Differential Equations
    Mathematical Modeling and IndustrialMathematics
  • 出版者:Springer Netherlands
  • ISSN:1572-9141
文摘
For n = 2m ⩽ 4, let Ω ∈ ℝ n be a bounded smooth domain and N ⊂ ℝ L a compact smooth Riemannian manifold without boundary. Suppose that {u k } ∈ W m,2(Ω, N) is a sequence of weak solutions in the critical dimension to the perturbed m-polyharmonic maps $$\frac{{\text{d}}}{{{\text{dt}}}}\left| {_{t = 0}{E_m}({\text{II}}(u + t\xi )) = 0} \right.$$ with Ω k → 0 in (W m,2(Ω, N))* and \({u_k} \rightharpoonup u\) weakly in W m,2(Ω,N). Then u is an m-polyharmonic map. In particular, the space of m-polyharmonic maps is sequentially compact for the weak-W m,2 topology. Keywords polyharmonic map compactness Coulomb moving frame Palais-Smale sequence removable singularity MSC 2010 35J35 35J48 58J05 The work was supported by the National Science Foundation of China grant 11371050.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700