Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment
详细信息    查看全文
  • 作者:Arto Heiskanen (1)
    Vasile Coman (1) (4)
    Natalie Kostesha (1)
    David Sabourin (1)
    Nick Haslett (2) (5)
    Keith Baronian (2)
    Lo Gorton (3)
    Martin Dufva (1)
    Jenny Emnéus (1)
  • 关键词:Cellular redox activity ; Microbial bioelectrochemistry ; Osmium redox polymer ; Double mediator system ; Saccharomyces cerevisiae ; Microfluidic system
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:405
  • 期:11
  • 页码:3847-3858
  • 全文大小:601KB
  • 参考文献:1. Kjeldsen T, Balschmidt P, Diers I, Hach M, Kaarsholm NC, Ludvigsen S (2001) Biotechnol Gen Eng Rev 18:89-21
    2. Hugenholtz J, Smid EJ (2002) Curr Opin Biotechnol 13:497-07 CrossRef
    3. Hugenholtz J (2008) Int Dairy J 18:466-75 CrossRef
    4. Nevoigt E, Pilger R, Mast-Gerlach E, Schmidt U, Freihammer S, Eschenbrenner M, Garbe L, Stahl U (2002) FEMS Yeast Res 2:225-32
    5. Zhang F, Rodriguez S, Keasling JD (2011) Curr Opin Biotechnol 22:775-83 CrossRef
    6. Stewart JD (2000) Curr Opin Biotechnol 11:363-68 CrossRef
    7. Pieper DH, Reineke W (2000) Curr Opin Biotechnol 11:262-70 CrossRef
    8. Ikeda T, Kato K, Maeda M, Tatsumi H, Kano K, Matsushita K (1997) J Electroanal Chem 430:197-04 CrossRef
    9. Baronian KHR, Gurazada S (2007) Biosens Bioelectron 22:2493-499 CrossRef
    10. Nakamura H, Suzuki K, Ishikuro H, Kinoshita S, Koizumi R, Okuma S, Gotoh M, Karube I (2007) Talanta 72:210-16 CrossRef
    11. Pasco N, Baronian K, Jeffries C, Hay J (2000) Appl Microbiol Biotechnol 53:613-18 CrossRef
    12. Rawson DM, Willmer AJ, Turner APF (1989) Biosensors 4:299-11 CrossRef
    13. Zhao JS, Wang Z, Wang M, Wang HS, He QP, Zhang H (2008) Talanta 74:1686-691 CrossRef
    14. Ertl P, Unterladstaetter U, Bayer K, Mikkelsen SR (2000) Anal Chem 72:4949-956 CrossRef
    15. Zhao JS, Wang Z, Fu CG, Wang M, He QP (2008) Electroanalysis 20:1587-592 CrossRef
    16. Kostesha N, Heiskanen A, Spegel C, Hahn-Hagerdal B, Gorwa-Grauslund M-F, Emneus J (2009) Bioelectrochemistry 76:180-88 CrossRef
    17. Heiskanen A, Spégel C, Kostesha N, Lindahl S, Ruzgas T, Emnéus J (2009) Anal Biochem 384:11-9 CrossRef
    18. Kostesha NV, Almeida JRM, Heiskanen AR, Gorwa-Grauslund MF, Hahn-Hagerdal B, Emneus J (2009) Anal Chem 81:9896-901 CrossRef
    19. Lovley DR (2008) Curr Opin Biotechnol 19:564-71 CrossRef
    20. Kostesha N, Willquist K, Emneus J, van Niel EWJ (2011) Extremophiles 15:77-7 CrossRef
    21. Ikeda T, Kurosaki T, Takayama K, Kano K (1996) Anal Chem 68:192-98 CrossRef
    22. Baronian KHR, Downard AJ, Lowen RK, Pasco N (2002) Appl Microbiol Biotechnol 60:108-13 CrossRef
    23. Spégel CF, Heiskanen AR, Kostesha N, Johanson TH, Gorwa-Grauslund MF, Koudelka-Hep M, Emneus J, Ruzgas T (2007) Anal Chem 79:8919-926 CrossRef
    24. Schr?der U (2007) Phys Chem Chem Phys 9:2619-629 CrossRef
    25. Gregg BA, Heller A (1991) J Phys Chem 95:5970-975 CrossRef
    26. Vostiar I, Ferapontova EE, Gorton L (2004) Electrochem Commun 6:621-26 CrossRef
    27. Timur S, Haghighi B, Tkac J, Pazarhoglu N, Telefoncu A, Gorton L (2007) Bioelectrochemistry 71:38-5 CrossRef
    28. Alferov S, Coman V, Gustavsson T, Reshetilov A, von Wachenfeldt C, Hagerhall C, Gorton L (2009) Electrochim Acta 54:4979-984 CrossRef
    29. Coman V, Gustavsson T, Finkelsteinas A, von Wachenfeldt C, H?gerh?ll C, Gorton L (2009) J Am Chem Soc 131:16171-6176 CrossRef
    30. Hasan K, Patil SA, Górecki K, Leech D, H?gerh?ll C, Gorton L (2012) Electrochemical communication between heterotrophically grown / Rhodobacter capsulatus with electrodes mediated by an osmium redox polymer. Bioelectrochemistry. doi:10.1016/j.bioelechem.2012.05.004
    31. Shkil H, Schulte A, Guschin DA, Schuhmann W (2011) Chemphyschem 12:806-13 CrossRef
    32. Weibel DB, DiLuzio WR, Whitesides GM (2007) Nat Rev Microbiol 5:209-18 CrossRef
    33. Lee JW, Kjeang E (2010) A perspective on microfluidic biofuel cells. Biomicrofluidics. doi:10.1063/1.3515523:041301
    34. Qian F, Morse DE (2011) Trends Biotechnol 29:62-9 CrossRef
    35. Wang H-Y, Bernarda A, Huang C-Y, Lee D-J, Chang J-S (2011) Biores Technol 102:235-43 CrossRef
    36. Hou H, Li L, de Figueiredo P, Han A (2011) Biosens Bioelectron 26:2680-684 CrossRef
    37. Ertl P, Wagner M, Corton E, Mikkelsen SR (2003) Biosens Bioelectron 18:907-16 CrossRef
    38. Gottschamel J, Richter L, Mak A, Jungreuthmayer C, Birnbaumer G, Milnera M, Brueckl H, Ertl P (2009) Anal Chem 81:8503-512 CrossRef
    39. MicroChemicals GmbH (2003) Processing image reversal resists. MicroChemicals GmbH, Ulm. http://www.microchemicals.eu/technical_information/image_reversal_resists.pdf. Accessed 16 Feb 2012
    40. Fischer LM, Tenje M, Heiskanen AR, Masuda N, Castillo J, Bentien A, Emneus J, Jakobsen MH, Boisen A (2009) Microelectron Eng 86:1282-285 CrossRef
    41. Gao ZQ, Binyamin G, Kim HH, Barton SC, Zhang YC, Heller A (2002) Angew Chem Int Ed 41:810-13 CrossRef
    42. Boles E, Zimmermann FK (1993) Curr Genet 23:187-91 CrossRef
    43. Boles E, Zimmermann FK (1994) Mol Gen Genet 243:363-68
    44. Heiskanen A, Yakovleva J, Spegel C, Taboryski R, Koudelka-Hep M, Emneus J, Ruzgas T (2004) Electrochem Commun 6:219-24 CrossRef
    45. Skafte-Pedersen P, Sabourin D, Dufva M, Snakenborg D (2009) Lab Chip 9:3003-006 CrossRef
    46. Gao QA, Guo YY, Zhang WY, Qi HL, Zhang CX (2011) Sens Actuators B 153:219-25 CrossRef
    47. Shin H, Kang C (2010) Bull Kor Chem Soc 31:3118-122 CrossRef
    48. Zór K, Vergani M, Heiskanen A, Landini E, Carminati M, Coman V, Vedarethinam I, Skafte-Pedersen P, Skolimowski M, Martinez Serrano A, Kokaia M, Ramos Moreno T, Ghio A, Svendsen WE, Dimaki M, Keresztes Z, Adamovski M, Wollenberger U, Sabourin D, Ferrari G, Raiteri R, Sampietro M, Dufva M, Emnéus J (2011) Real-time monitoring of cellular dynamics using a microfluidic cell culture system with integrated electrode array and potentiostat. In: Landers JP, Herr A, Juncker D, Pamme N, Bienvenue J (eds) Proceedings of the 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS2011), Seattle, Washington, USA, vol. 2, pp 1532-535
    49. Guschin DA, Castillo J, Dimcheva N, Schuhmann W (2010) Anal Bioanal Chem 398:1661-673 CrossRef
    50. Sabourin D, Skafte-Pedersen P, S?e MJ, Hemmingsen M, Alberti M, Coman V, Petersen J, Emnéus J, Kutter JP, Snakenborg D, J?rgensen F, Clausen C, Holmstr?m K, Dufva M (2012) JALA. doi:10.1177/2211068212461445
  • 作者单位:Arto Heiskanen (1)
    Vasile Coman (1) (4)
    Natalie Kostesha (1)
    David Sabourin (1)
    Nick Haslett (2) (5)
    Keith Baronian (2)
    Lo Gorton (3)
    Martin Dufva (1)
    Jenny Emnéus (1)

    1. Department of Micro- and Nanotechnology, Technical University of Denmark, Produktionstorvet 423, 2800, Kgs. Lyngby, Denmark
    4. Faculty of Chemistry and Chemical Engineering, Babe?-Bolyai University, Cluj-Napoca, Romania
    2. School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
    5. Agriculture and Life Sciences Division, Lincoln University, Lincoln, Canterbury, New Zealand
    3. Department of Biochemistry and Structural Biology, Lund University, P.O. Box 124, 22100, Lund, Sweden
  • ISSN:1618-2650
文摘
Conventionally, microbial bioelectrochemical assays have been conducted using immobilized cells on an electrode that is placed in an electrochemical batch cell. In this paper, we describe a developed microfluidic platform with integrated microelectrode arrays for automated bioelectrochemical assays utilizing a new double mediator system to map redox metabolism and screen for genetic modifications in Saccharomyces cerevisiae cells. The function of this new double mediator system based on menadione and osmium redox polymer (PVI-Os) is demonstrated. “Wiring-of S. cerevisiae cells using PVI-Os shows a significant improvement of bioelectrochemical monitoring in a microfluidic environment and functions as an effective immobilization matrix for cells that are not strongly adherent. The function of the developed microfluidic platform is demonstrated using two strains of S. cerevisiae, ENY.WA and its deletion mutant EBY44, which lacks the enzyme phosphoglucose isomerase. The cellular responses to introduced glucose and fructose were recorded for the two S. cerevisiae strains, and the obtained results are compared with previously published work when using an electrochemical batch cell, indicating that microfluidic bioelectrochemical assays employing the menadione–PVI-Os double mediator system provides an effective means to conduct automated microbial assays. Figure Microfluidic platform for bioelectrochemical assays using osmium redox polymer “wired-living yeast cells

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700