Synthesis, characterization and crystallization kinetics of nanocomposites prepared by in situ polymerization of ethylene and graphene
详细信息    查看全文
  • 作者:Farrukh Shehzad ; Muhammad Daud…
  • 关键词:Polyethylene ; Graphene ; Nanocomposites ; Crystallization ; Kinetics ; Polymerization ; Calorimetry
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:123
  • 期:2
  • 页码:1501-1511
  • 全文大小:3,203 KB
  • 参考文献:1.Chaudhry AU, Mittal V. High-density polyethylene nanocomposites using master batches of chlorinated polyethylene/graphene oxide. Polym Eng Sci. 2013;53:78–88. doi:10.​1002/​pen.​23241 .CrossRef
    2.Bieligmeyer M, Taheri SM, German I, Boisson C, Probst C, Milius W, et al. Completely miscible polyethylene nanocomposites. J Am Chem Soc. 2012;. doi:10.​1021/​ja307297c .
    3.Roumeli E, Terzopoulou Z, Pavlidou E, Chrissafis K, Papadopoulou E, Athanasiadou E, et al. Effect of maleic anhydride on the mechanical and thermal properties of hemp/high-density polyethylene green composites. J Therm Anal Calorim. doi:10.​1007/​s10973-015-4596-y .
    4.Barbosa R, Alves TS, Araújo EM, Mélo TJA, Camino G, Fina A, et al. Flammability and morphology of HDPE/clay nanocomposites. J Therm Anal Calorim. 2013;115:627–34. doi:10.​1007/​s10973-013-3310-1 .CrossRef
    5.Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28:1539–641.CrossRef
    6.Lotti C, Isaac CS, Branciforti MC, Alves RMV, Liberman S, Bretas RES. Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polym J. 2008;44:1346–57.CrossRef
    7.Grigoriadou I, Paraskevopoulos KM, Karavasili M, Karagiannis G, Vasileiou A, Bikiaris D. HDPE/Cu-nanofiber nanocomposites with enhanced mechanical and UV stability properties. Compos Part B Eng. 2013;55:407–20.CrossRef
    8.Zubair M, Jose J, Emwas AH, Al-Harthi MA. Effect of modified graphene and microwave irradiation on the mechanical and thermal properties of poly(styrene-co-methyl methacrylate)/graphene nanocomposites. Surf Interface Anal. 2014;46:630–9.CrossRef
    9.Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules. 2010;43:6515–30.CrossRef
    10.Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35:1350–75.CrossRef
    11.Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature. 2006;442:282–6.CrossRef
    12.Fim FDC, Basso NRS, Graebin AP, Azambuja DS, Galland GB. Thermal, electrical, and mechanical properties of polyethylene-graphene nanocomposites obtained by in situ polymerization. J Appl Polym Sci. 2013;128:2630–7.CrossRef
    13.Kim H, Kobayashi S, AbdurRahim MA, Zhang MJ, Khusainova A, Hillmyer MA, et al. Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer. 2011;52:1837–46.CrossRef
    14.Chaudhry A, Mittal V. Masterbatch approach to generate HDPE/CPE/graphene nanocomposites. In: Mittal V, editor. Synth Tech Polym. Nanocomposites Weinheim, Germany: Wiley GmbH & Co. KGaA; 2014. doi:10.​1002/​9783527670307 .
    15.Mittal V. In-situ synthesis of polymer nanocomposites. In: Mittal V, editor. In-Situ Synth Polym. Nanocomposites Weinheim, Germany: Wiley GmbH & Co. KGaA; 2011. p. 1–25. doi:10.​1002/​9783527640102.​ch1 .
    16.Zheng W, Lu X, Wong S. Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci. 2004;91:2781–8.CrossRef
    17.Wang J, Xu C, Hu H, Wan L, Chen R, Zheng H, et al. Synthesis, mechanical, and barrier properties of LDPE/graphene nanocomposites using vinyl triethoxysilane as a coupling agent. J Nanopart Res. 2010;13:869–78.CrossRef
    18.Park S, Yoon SW, Lee K-B, Kim DJ, Jung YH, Do Y, et al. Carbon nanotubes as a ligand in Cp2ZrCl2-based ethylene polymerization. Macromol Rapid Commun. 2006;27:47–50.
    19.Stürzel M, Kempe F, Thomann Y, Mark S, Enders M, Mülhaupt R. Novel graphene UHMWPE nanocomposites prepared by polymerization filling using single-site catalysts supported on functionalized graphene nanosheet dispersions. Macromolecules. 2012;45:6878–87.CrossRef
    20.Fim FC, Guterres JM, Basso NRS, Galland GB. Polyethylene/graphite nanocomposites obtained by in situ polymerization. J Polym Sci Part A Polym Chem. 2010;48:692–8.CrossRef
    21.Shehzad F, Thomas SP, Al-Harthi MA. Non-isothermal crystallization kinetics of high density polyethylene/graphene nanocomposites prepared by in situ polymerization. Thermochim Acta. 2014;589:226–34.CrossRef
    22.Daud M, Shehzad F, Al-Harthi MA. Non-isothermal crystallization kinetics of LLDPE prepared by in situ polymerization in the presence of nano titania. Polym Bull. 2015;72:1233–45.CrossRef
    23.Papageorgiou GZ, Palani A, Gilliopoulos D, Triantafyllidis KS, Bikiaris DN. Mechanical properties and crystallization of high-density polyethylene composites with mesostructured cellular silica foam. J Therm Anal Calorim. 2013;113:1651–65.CrossRef
    24.Guimarães R, Stedile FC, dos Santos JH. Ethylene polymerization with catalyst systems based on supported metallocenes with varying steric hindrance. J Mol Catal A Chem. 2003;206:353–62.CrossRef
    25.Cheng S, Chen X, Hsuan YG, Li CY. Reduced graphene oxide-induced polyethylene crystallization in solution and nanocomposites. Macromolecules. 2012;45:993–1000.CrossRef
    26.Anantawaraskul S, Soares JBP. Fractionation of semicrystalline polymers by crystallization analysis fractionation and temperature rising elution fractionation. Adv Polym Sci. 2005;182:1–54.CrossRef
    27.Anantawaraskul S, Soares JB, Wood-Adams PM, Monrabal B. Effect of molecular weight and average comonomer content on the crystallization analysis fractionation (Crystaf) of ethylene α-olefin copolymers. Polymer. 2003;44:2393–401.CrossRef
    28.Han TK, Choi HK, Jeung DW, Ko YS, Woo SI. Control of molecular weight and molecular weight distribution in ethylene polymerization with metallocene catalysts. Macromol Chem Phys. 1995;196:2637–47.CrossRef
    29.Choi B, Lee J, Lee S, Ko J-H, Lee K-S, Oh J, et al. Generation of ultra-high-molecular-weight polyethylene from metallocenes immobilized onto N-doped graphene nanoplatelets. Macromol Rapid Commun. 2013;34:533–8.CrossRef
    30.Yan D, Wang W-J, Zhu S. Effect of long chain branching on rheological properties of metallocene polyethylene. Polymer. 1999;40:1737–44.CrossRef
    31.Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103.CrossRef
    32.Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26:222–31.CrossRef
    33.Trujillo M, Arnal ML, Müller AJ, Laredo E, Bredeau S, Bonduel D, et al. Thermal and morphological characterization of nanocomposites prepared by in-situ polymerization of high-density polyethylene on carbon nanotubes. Macromolecules. 2013;40:6268–76. doi:10.​1021/​ma071025m .CrossRef
    34.Ferreira CI, Dal Castel C, Oviedo MAS, Mauler RS. Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim Acta. 2013;553:40–8.CrossRef
    35.Xu J-Z, Liang Y-Y, Zhong G-J, Li H-L, Chen C, Li L-B, et al. Graphene oxide nanosheet induced intrachain conformational ordering in a semicrystalline polymer. J Phys Chem Lett. 2012;3:530–5.CrossRef
    36.Deng S, Lin Z, Xu B, Qiu W, Liang K, Li W. Isothermal crystallization kinetics, morphology, and thermal conductivity of graphene nanoplatelets/polyphenylene sulfide composites. J Therm Anal Calorim. 2014;118:197–203.CrossRef
    37.Fillon B, Wittmann JC, Lotz B, Thierry A. Self-nucleation and recrystallization of isotactic polypropylene (A phase) investigated by differential scanning calorimetry. J Polym Sci Part B Polym Phys. 1993;31:1383–93.CrossRef
    38.Fillon B, Lotz B, Thierry A, Wittmann JC. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci Part B Polym Phys. 1993;31:1395–405.CrossRef
    39.Xin S, Li Y, Zhao H, Bian Y, Li W, Han C, et al. Confinement crystallization of poly(l-lactide) induced by multiwalled carbon nanotubes and graphene nanosheets. J Therm Anal Calorim. 2015;. doi:10.​1007/​s10973-015-4695-9 .
    40.Sewda K, Maiti SN. Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polym Bull. 2013;70:2657–74.CrossRef
    41.Ran S, Chen C, Guo Z, Fang Z. Char barrier effect of graphene nanoplatelets on the flame retardancy and thermal stability of high-density polyethylene flame-retarded by brominated polystyrene. J Appl Polym Sci. 2014;131.
    42.Zhuo D, Wang R, Wu L, Guo Y, Ma L, Weng Z, et al. Flame retardancy effects of graphene nanoplatelet/carbon nanotube hybrid membranes on carbon fiber reinforced epoxy composites. J Nanomater. 2013. doi:10.​1155/​2013/​820901 .
    43.Ran S, Guo Z, Han L, Fang Z. Effect of a lewis acid catalyst on the performance of HDPE/BFR/GNPs composites. Ind Eng Chem Res. 2014;53:4711–7. doi:10.​1021/​ie404302b .
  • 作者单位:Farrukh Shehzad (1)
    Muhammad Daud (1)
    Mamdouh A. Al-Harthi (1) (2)

    1. Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, P.O. Box 5050, Dhahran, 31261, Saudi Arabia
    2. Center for Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
High-density polyethylene (HDPE)/graphene nanocomposites were synthesized by in situ polymerization. Zriconocene was used as a catalyst and methylaluminoxane as a co-catalyst. The effect of graphene on the activity of the catalyst and on chain microstructure, crystallization kinetics, mechanical and thermal characteristics of HDPE was investigated. Both the thermal and mechanical properties of HDPE were enhanced. The catalyst showed a slight reduction in the activity. The molecular weight of the polymer was analyzed by gel permeation chromatography, and a significant increase in weight-average molecular weight (M W) of HDPE was observed in the presence of graphene. Isothermal crystallization kinetics was studied by differential scanning calorimetry. The crystallization rate was increased with the addition of graphene. Microcalorimetric analysis indicated a major decrease in the peak decomposition temperature as well as the total heat released for the HDPE/graphene nanocomposites. Keywords Polyethylene Graphene Nanocomposites Crystallization Kinetics Polymerization Calorimetry

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700