Barite from the Saf'yanovka VMS deposit (Central Urals) and Semenov-1 and Semenov-3 hydrothermal sulfide fields (Mid-Atlantic Ridge): a comparative analysis of formation conditions
详细信息    查看全文
  • 作者:Nataliya P. Safina ; Irina Yu. Melekestseva ; Paolo Nimis…
  • 关键词:Barite ; Central Urals ; Fluid inclusions ; Hydrothermal sulfide field ; Mid ; Atlantic Ridge ; Sulfur isotopic compositions ; VMS deposit
  • 刊名:Mineralium Deposita
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:51
  • 期:4
  • 页码:491-507
  • 全文大小:1,301 KB
  • 参考文献:Beltenev V, Ivanov V, Rozhdestvenskaya I, Cherkashov G, Stepanova T, Shilov V, Pertsev A, Davydov M, Egorov I, Melekestseva I, Narkevsky E, Ignatov V (2007) A new hydrothermal field at 13°30′ N on the Mid-Atlantic Ridge. InterRidge News 16:9–10
    Beltenev V, Ivanov V, Rozhdestvenskaya I, Cherkashov G, Stepanova T, Shilov V, Davydov M, Laiba A, Kaylio V, Narkevsky E, Pertsev A, Dobretsova I, Gustaitis A, Ye P, Amplieva A, Evrara C, Moskalev L, Gebruk A (2009) New data about hydrothermal fields on the Mid-Atlantic Ridge between 11°–14° N: 32nd cruise of R/V Professor Logatchev. InterRidge News 18:14–18
    Bendel V, Fouquet Y, Auzende J-M, Lagabrielle Y, Grimaud D, Urabe T (1993) The White Lady hydrothermal field, North Fiji back-arc basin, Southwest Pacific. Econ Geol 88:2237–2245CrossRef
    Berkenbosch HA, de Ronde CEJ, Gemmell JB, McNeill AW, Goemann K (2012) Mineralogy and formation of black smoker chimneys from brothers submarine volcano, Kermadec Arc. Econ Geol 107:1613–1633CrossRef
    Bertram MA, Cowen JP (1997) Morphological and compositional evidence for biotic precipitation of marine barite. J Marine Res 55:577–593CrossRef
    Binns RA, Scott SD, Bogdanov YA, Lisitzin AP, Gordeev VV, Gurvich EG, Finlayson EJ, Boyd T, Dotter LE, Wheller GE, Muravyev KG (1993) Hydrothermal oxide and gold-rich sulfate deposits of Franklin Seamount, Western Woodlark Basin, Papua New Guinea. Econ Geol 88:2122–2153CrossRef
    Bischoff JL, Rosenbauer RJ (1984) The critical point and two-phase boundary of seawater, 200–500 °C. Earth Planet Sci Lett 68:172–180CrossRef
    Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo B and Frezzotti ML (Eds) Fluid inclusions in minerals: methods and applications. Blacksburg, Virgina Tech., Short Course of the Working Group (IMA) “Inclusions in minerals”, Siena, pp 117–130
    Bogdanov YA, Bortnikov NS, Vikent’ev IV, Lein AY, Gurvich EG, Sagalevich AM, Simonov VA, Ikorskii SV, Stavrova OO, Apollonov VN (2002) Mineralogical–geochemical peculiarities of hydrothermal sulfide ores and fluids in the Rainbow field associated with serpentinites, Mid-Atlantic Ridge (36°14′N). Geol Ore Dep 44:444–473
    Bogdanov YA, Lein AY, Sagalevich AM, Dorofeev SA, Ul’yanova NV (2006) Hydrothermal sulfide deposits of the Lucky Strike vent field, Mid-Atlantic Ridge. Geochem Intern 44:403–418CrossRef
    Bortnikov NS, Vikent’ev IV (2005) Modern base metal sulfide mineral formation in the World Ocean. Geol Ore Dep 47:13–44
    Bortnikov NS, Krylova TL, Bogdanov YA, Vikentyev IV, Nosik LP (1997) The 14°45′N hydrothermal field, Mid-Atlantic Ridge: fluid inclusion and sulfur isotope evidence for submarine phase separation. In: Papunen H (ed) Mineral Deposits: research and exploration. Where do they meet. Proc 4th Biennial SGA Meet, Turku, Finnland. Balkema, Rotterdam 353–356
    Bortnikov NS, Simonov VA, Bogdanov YA (2004) Fluid inclusions in minerals from modern sulfide edifices: physicochemical conditions of formation and evolution of fluids. Geol Ore Dep 46:64–75
    Butterfield DA, Massoth GJ, McDuff RE, Lupton JE, Lilley MD (1990) Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emissions study vent field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid-rock interaction. J Geophys Res 95:12895–12921CrossRef
    Cazañas X, Alfonso P, Melgarejo JC, Proenza JA, Fallick AE (2008) Geology, fluid inclusion and sulphur isotope characteristics of the El Cobre VHMS deposit, Southern Cuba. Mineral Dep 43:805–824CrossRef
    Cherkashov G, Bel’tenev V, Ivanov V, Lazareva L, Samovarov M, Shilov V, Stepanova T, Glasby GP, Kuznetsov V (2008) Two new hydrothermal fields at the Mid-Atlantic Ridge. Marine Geor Geotechn 26:308–316CrossRef
    Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulphur and oxygen isotopes in marine sulphates and their mutual interpretation. Chem Geol 28:199–260CrossRef
    Constantinou G, Govett GJS (1972) Genesis of sulphide deposits, ochre and umber of Cyprus. Trans Inst Min Metall 81:B34–B46
    Cowan J, Cann J (1988) Supercritical two-phase separation of hydrothermal fluids in the Troodos ophiolite. Nature 333:259–261CrossRef
    Dahlmann A, Wallmann K, Sahling H, Sarthou G, Bohrmann G, Petersen S, Chin CS, Klinkhammer GP (2001) Hot vents in an ice-cold ocean: indications for phase separation at the southernmost area of hydrothermal activity, Bransfield Strait, Antarctica. Earth Planet Sci Lett 193:381–394CrossRef
    Davis AS, Clague DA, Zierenberg RA, Wheat CG, Cousens BL (2003) Sulfide formation related to changes in the hydrothermal system on Loihi seamount, Hawai’i, following the seismic event in 1996. Can Mineral 41:457–472CrossRef
    de Ronde CEJ, Faure K, Bray CJ, Chappell DA, Wright IC (2003) Hydrothermal fluids associated with seafloor mineralization at two southern Kermadec arc volcanoes, offshore New Zealand. Miner Dep 38:217–233
    de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG, Reyes AG, Baker ET, Massoth GJ, Lupton JE, Walker SL, Greene RR, Soong CWR, Ishibashi J, Lebon GT, Bray CJ, Resing JA (2005) Evolution of a submarine magmatic–hydrothermal system: brothers volcano, southern Kermadec arc, New Zealand. Econ Geol 100:1097–1133CrossRef
    de Ronde CEJ, Massoth GJ, Butterfield DA, Christenson BW, Ishibashi J, Ditchburn RG, Hannington MD, Brathwaite RL, Lupton JE, Kamenetsky VS, Graham IJ, Zellmer GF, Dziak RP, Embley RW, Dekov VM, Munnik F, Lahr J, Evans LJ, Takai K (2011) Submarine hydrothermal activity and gold-rich mineralization at brothers volcano, Kermadec Arc, New Zealand. Miner Dep 46:541–584CrossRef
    Deer WA, Howie RA, Zusmann J (1962) Rock-forming minerals. Non-silicates, vol 5. Longmans, London
    Duckworth RC, Knott R, Fallick AE, Ricard D, Murton BJ, Van Dover C (1995) Mineralogy and sulphur isotope geochemistry of the broken spur sulphides, 29° N, Mid-Atlantic ridge. In: Parson LM, Walker CL, and Dixon DR (eds) Hydrothermal vents and processes. Geol Soc, London, Spec Public 87:175–190
    Eickmann B, van Zuilen MA, Thorseth IH, Pedersen R, (2010) Barite chimneys from two hydrothermal sites along the slow-spreading Arctic Ridge system: initial isotope and mineralogical results. American Geophysical Union, Fall Meeting, abstract #OS21A-1482
    Fairbridge RW (1967) Phases of diagenesis and authigenesis. In: Larsen G, Chilingar GV (eds) Diagenesis in sediments. Elsevier, Amsterdam, pp 19–89CrossRef
    Fouquet Y, von Stackelberg U, Charlou JL, Erzinger J, Herzig PM, Muehe R, Wiedicke M (1993a) Metallogenesis in back-arc environments: the Lau Basin example. Econ Geol 88:2154–2181CrossRef
    Fouquet Y, Wafik A, Cambon P, Mevel C, Meyer G, Gente P (1993b) Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23°C N). Econ Geol 88:2018–2036CrossRef
    Fouquet Y, Charlou J-L, Costa I, Donvall JP, Radford-Knoery J, Pellé H, Ondréas H, Lourenço N, Ségonzac M, Tivey MK (1994) A detailed study of the Lucky Strike hydrothermal site and discovery of a new hydrothermal site: Menez Gwen; preliminary results of the DIVA1 Cruise (5–29 May, 1994). InterRidge News 3(2):14–17
    Frezzotti ML, Tecce F, Casagli A (2012) Raman spectroscopy for fluid inclusion analysis. J Geochem Explor 112:1–20CrossRef
    Gieskes JM, Simoneit BRT, Brown T, Shaw T, Wang Y-C, Magenheim A (1988) Hydrothermal fluids and petroleum in surface sediments of Guaymas Basin, Gulf of California: a case study. Can Mineral 26:589–602
    Glasby GP, Iizasa K, Hannington M, Kubota H, Notsu K (2008) Mineralogy and composition of Kuroko deposits from northeastern Honshu and their possible modern analogues from the Izu-Ogasawara (Bonin) Arc south of Japan: implications for mode of formation. Ore Geol Rev 34:547–560CrossRef
    Goodfellow WD, Blaise B (1988) Sulfide formation and hydrothermal alteration of hemapelagic sediment in Middle Valley, Northern Juan de Fuca Ridge. Can Mineral 26:675–696
    Greinert J, Bollwerk SM, Derkachev A, Bohrmann G, Suess E (2002) Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk: precipitation processes at cold seep sites. Earth Planet Sci Lett 203:165–180CrossRef
    Griffith EM, Paytan A (2012) Barite in the ocean—occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59(6):1817–1835CrossRef
    Gruen G, Weis P, Driesner T, Heinrich CA, de Ronde CEJ (2014) Hydrodynamic modeling of magmatic–hydrothermal activity at submarine arc volcanoes, with implications for ore formation. Earth Planet Sci Lett 404:307–318CrossRef
    Halbach P, Pracejus B, Maerten A (1993) Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan. Econ Geol 88:2210–2225CrossRef
    Halbach P, Blum N, Münch U, Plüger W, Garbe-Schönberg D, Zimmer M (1998) Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Miner Deposita 33:302–309CrossRef
    Hannington MD, Scott SD (1989) Sulfidation equilibria as guides to gold mineralization in volcanogenic massive sulfides: evidence for sulfide mineralogy and the composition of sphalerite. Econ Geol 84:1978–1995CrossRef
    Hannington MD, Galley AG, Herzig PM, Petersen S (1998) Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits. In: Herzig PM, Humphris SE, Miller DJ, Zierenberg RA (eds) Proc ODP Sci Results 158:389–415
    Hanor JS (2000) Barite-celestine geochemistry and environments of formation. In: Alpers CN, Jambor JL and Nordstrom DK (eds) Reviews in mineralogy & geochemistry—sulfate minerals. Mineral Soc America, Washington, D.C., 40, pp 193–275
    Hao F, Zou H, Huang B (2003) Natural gas generation model and its response in accumulated fluids in the Yinggehai basin. Sci China (Series D) 46(11):1103–1112CrossRef
    Hein JR, Zierenberg RA, Maynard JB, Hannington MD (2007) Barite-forming environments along a rifted continental margin, Southern California Borderland. Deep Sea Res II 54:1327–1349CrossRef
    Hein JR, de Ronde CEJ, Koski RA, Ditchburn RG, Mizell K, Tamura Y, Stern RJ, Conrad TA, Ishizuka O, Leybourne MI (2014) Layered hydrothermal barite-sulfide mound field, east diamante caldera, Mariana volcanic arc. Econ Geol 109:2179–2206CrossRef
    Herzig PM, Hannington MD, Fouquet Y, von Stackelberg U, Petersen S (1993) Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific. Econ Geol 88:2182–2209CrossRef
    Holland NG (2002) The formation of an ancient gold-rich volcanogenic massive sulphide deposit: a study of the Balta-Tau deposit in the Southern Urals of Russia. PhD thesis. University of Southampton
    Hou Z, Khin Z, Qu X, Ye Q, Yu J, Xu M, Fu D, Yin X (2001) Origin of the Gacun volcanic-hosted massive sulfide deposit in Sichuan, China: fluid inclusion and oxygen isotope evidence. Econ Geol 96:1491–1512
    Ivanov VN, Beltenev VE, Stepanova TV, Lazareva LI, Smovarov ML (2008) Sulfide ores of the new hydrothermal fields at 13°31′ N MAR. In: Zaykov VV, Belogub EV and Melekestseva IY (eds) Metallogeny of ancient and modern oceans-2008. Ore-bearing complexes and ore facies. IMin UB RAS, Miass pp 19–22 (in Russian)
    Jewell PW, Stallard RF (1991) Geochemistry and paleoceanographic setting of Central Nevada Bedded Barites. J Geol 99(2):151–170CrossRef
    Kelley DS, Delaney JR (1987) Two-phase separation and fracturing in mid-ocean ridge gabbros at temperatures greater than 700 °C. Earth Planet Sci Lett 83:53–56CrossRef
    Koroteev VA, Yazeva RG, Bochkarev VV, Moloshag VP, Korovko AV, Sheremet’ev YuS (1997) Geological position and composition of ores from the Saf’yanovka deposit, Central Urals. Yekaterinburg, IGG UB RAS (in Russian)
    Krylova MA, Melekestseva IY (2011) Raman spectroscopy of barite from the Semenov-1 hydrothermal field (13°30.87′N, Mid-Atlantic Ridge). In: Anfilogov VN (ed) Minerals: structure, properties and methods of investigations. Miass, IMin UB RAS, pp 194–196 (in Russian)
    Lam P, Cowen JP, Popp BN, Jones RD (2008) Microbial ammonia oxidation and enhanced nitrogen cycling in the endeavour hydrothermal plume. Geochim Cosmochim Acta 72:2268–2286CrossRef
    Lang SQ, Früh-Green GL, Bernasconi SM, Butterfield DA (2013) Sources of organic nitrogen at the serpentinite-hosted lost city hydrothermal field. Geobiology 11:154–169CrossRef
    Lecuyer C, Dubois M, Marignac C, Gruau G, Fouquet Y, Ramboz C (1999) Phase separation and fluid mixing in subseafloor back arc hydrothermal systems; a microthermometric and oxygen isotope study of fluid inclusions in the barite-sulfide chimneys of the Lau Basin. J Geophys Res 104:911–928CrossRef
    Lilley MD, Butterfield DA, Olson EJ, Lupton JE, Macko SA, McDuff RE (1993) Anomalous CH4 and NH2 + concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364:45–47CrossRef
    Lilley MD, Butterfield DA, Lupton JE, Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422:878–881CrossRef
    Littke R, Krooss B, Idiz E, Frielingsdorf J (1995) Molecular nitrogen in natural gas accumulations: generation from sedimentary organic matter at high temperatures. AAPG Bull 79(3):410–430
    Lüders V, Pracejus B, Halbach P (2001) Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan). Chem Geol 173:45–58CrossRef
    Ludwig KA, Kelley DS, Butterfield DA, Nelson BK, Früh-Green G (2006) Formation and evolution of carbonate chimneys at the lost city hydrothermal field. Geochim Cosmochim Acta 70:3625–3645CrossRef
    Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment Geol 140:143–175CrossRef
    Maslennikov VV (2006) Lithogenesis and formation of massive sulfide deposits. IMin UB RAS, Miass (in Russian)
    Maslennikov VV, Herrington RJ, Zaykov VV, Belogub EV, Safina NP (2006) Ore facies and lithogenesis of massive sulphide deposits of the Middle and North Urals. In: Smolkin VF (ed) Field trip guidebook of the 12th Quadrennial IAGOD Symposium on understanding the genesis of ore deposits: to meet the demands of the 21st century, Moscow, pp 65–90
    Maslennikov VV, Maslennikova SP, Large RR, Danyushevsky LV (2009) Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ Geol 104:1111–1141CrossRef
    Maslennikova SP, Maslennikov VV (2007) Sulfide chimneys of palaeozoic black smokers on the example of the Urals. UB RAS, Yekaterinburg (in Russian)
    Massoth GJ, Butterfield DA, Lupton JE, McDuff RE, Lilley MD, Jonasson IR (1989) Submarine venting of phase-separated hydrothermal fluids at Axial Volcano, Juan de Fuca Ridge. Nature 340:702–705CrossRef
    McLeod CJ, Searle RC, Murton BJ, Casey JF, Mallows C, Unsworth SC, Achenbach KL, Harris M (2009) Life cycle of oceanic core complexes. Earth Planet Sci Lett 287:333–344CrossRef
    Melekestseva IY, Tret’yakov GA, Nimis P, Yuminov AM, Maslennikov VV, Maslennikova SP, Kotlyarov VA, Beltenev VE, Danyushevsky LV, Large R (2014) Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87′ N): evidence for phase separation and magmatic input. Marine Geol 349:37–54CrossRef
    Mironova OF, Salazkin AN, Garanin AV (1992) Comparison of results of gas analysis of fluid inclusions by mechanical and thermal destruction. Geokhimiya 1:78–87
    Murowchick JB, Barnes HL (1986) Marcasite precipitation from hydrothermal solutions. Geochim Cosmochim Acta 50:2615–2659CrossRef
    Murzin VV, Varlamov DA, Yaroslavtseva NS, Moloshag VP (2010) Mineralogy and structure of barite–sulfide veins of the Saf’yanovka massive sulfide deposit. In: Popov VA (ed) Ural mineralogical collection, pp 12–19 (in Russian)
    Naumov VB, Akhmanova MV, Sobolev AV, Dhamelncourt P (1986) Application of laser raman-microprobe to a study of gas phase of inclusions in minerals. Geokhimiya 7:1027–1034
    Nehlig P (1993) Interactions between magma chambers and hydrothermal systems: oceanic and ophiolitic constraints. J Geophys Res 98(BI1):19621–19633
    Ohmoto H (1996) Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol Rev 10:135–177CrossRef
    Paytan A, Mearon S, Cobb K, Kastner M (2002) Origin of marine barite deposits: Sr and S isotope characterization. Geology 30(8):747–750CrossRef
    Pedersen RB, Tore Rapp H, Thorseth IH, Lilley MD, Barriga FJAS, Baumberger T, Flesland K, Fonseca R, Früh-Green GL, Jorgensen SL (2010) Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat Commun. doi:10.​1038/​ncomms1124
    Petersen S, Herzig PM, Hannington MD (2000) Third dimension of a presently forming VMS deposit: TAG hydrothermal field, Mid-Atlantic Ridge, 26° N. Mineral Dep 35:233–259CrossRef
    Petersen S, Herzig PM, Schwarz-Schampera U, Hannington MD, Jonasson IR (2004) Hydrothermal precipitates associated with bimodal volcanism in the Central Bransfield Strait, Antarctica. Miner Dep 39:358–379CrossRef
    Potter RW (1977) Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl–H2O. US Geol Surv J Res 5:603–607
    Puchkov VN (1993) Paleooceanic structures of the Urals. Geotectonic 3:18–34 (in Russian)
    Rees CE, Jenkins WJ, Monster J (1978) The sulfur isotopic composition of ocean water sulfate. Geochim Cosmochim Acta 42:377–381CrossRef
    Roedder E (1984) Fluid inclusions. Mineral Soc Am Rev Min 12:646
    Rona PA, Hannington MD, Raman CV, Thompson G, Tivey MK, Humphris SE, Lalou C, Petersen S (1993) Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge. Econ Geol 88:1989–2117CrossRef
    Safina NP, Maslennikov VV (2009) Sequence of mineral formation in clastic ores of the Saf’yanovka volcanic-hosted copper massive sulfide deposit, the Central Urals. Geol Ore Dep 51(7):633–643CrossRef
    Sasaki M, Iizasa K, Sawaki T (1995) Characteristics of gases in fluid inclusions from the Nurukawa Kuroko deposit and submarine sulfide deposits of the Izu–Ogasawara arc, Japan. Res Geol 45:1–10
    Sato T (1977) Kuroko deposits: their geology, geochemistry and origin. Geol Soc London Spec Publ 153–161
    Scotney PM, Roberts S, Herrington RJ (2005) The development of volcanic hosted massive sulfide and barite–gold orebodies on Wetar Island, Indonesia. Miner Dep 40:76–99CrossRef
    Scott S (1980) Geology and structural control of Kuroko-type massive sulfide deposits. In: Strangway DW (ed) The continental crust and its mineral deposits geol. Assoc Can Spec Pap 20:705–740
    Seal RR II (2006) Sulfur isotope geochemistry of sulfide minerals. Rev Min Geochem 61:633–677CrossRef
    Shadlun TN, Bortnikov NS, Bogdanov YA, Tufar W, Muravyev K, Gurvich EG, Muravitskaya KEA, Topa T (1992) Mineral composition and origin of massive sulfide ores in the Manus backarc basin (Pacific Ocean). Geol Rudn Mestorozh 34(5):3–21
    Shanks WC III, Böhlke JK, Seal RR II (1995) Stable isotopes in mid-ocean ridge hydrothermal systems: interactions between fluids, minerals and organisms. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal processes. Geophys Monogr 91:194–221
    Simonov VA, Kovyazin SV, Terenya EO, Maslennikov VV, Zaykov VV, Maslennikova SP (2006) Physicochemical parameters of magmatic and hydrothermal processes at the Yaman-Kasy massive sulfide deposit, the southern Urals. Geol Ore Dep 48(5):369–383CrossRef
    Steele JH, Thorpe SA, Turekian KK (2010) Marine chemistry and geochemistry: a derivative of encyclopedia of ocean sciences, 2nd edn. Elsevier, London, p 631
    Suzuki R, Ishibashi J-I, Nakaseama M, Konno U, Tsunogai U, Gena K, Chiba H (2006) Diverse range of mineralization Iinduced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough back-arc basin. Res Geol 58:267–288CrossRef
    Ulrich MR, Bodnar RJ (1988) Systematics of stretching of fluid inclusions II: Barite at 1 atm confining pressure. Econ Geol 83:1037–1046
    von Damm KL, Lilley MD, Shanks WC III, Brockington M, O’Grady KM, Olson E, Graham A, Proskurowski G, Bray AM, the SouEPR Science Party (2003) Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet Sci Lett 206:365–378CrossRef
    Yapaskurt OV (2005) Aspects of postsedimentation lithogenesis theory. Lithosphere 3:3–30
    Yazeva RG, Moloshag VP, Bochkarev VV (1991) Geology and ore parageneses of the Saf’yanovka massive sulfide deposit in the Central Urals back thrust. Geol Ore Dep 33(4):76–58
    Zierenberg RA, Koski RA, Morton JL, Bouse RM (1993) Genesis of massive sulfide deposits on a sediment-covered spreading center, escanaba trough, Southern Gorda Ridge. Econ Geol 88:2069–2098CrossRef
  • 作者单位:Nataliya P. Safina (1) (3)
    Irina Yu. Melekestseva (1)
    Paolo Nimis (2)
    Nataliya N. Ankusheva (1) (3)
    Anatoly M. Yuminov (3)
    Vasily A. Kotlyarov (1)
    Sergey A. Sadykov (1)

    1. Institute of Mineralogy, Urals Branch of Russian Academy of Sciences, Miass, Chelyabinsk District, 456317, Russia
    3. South Urals State University, 8 Iyulya st. 10., Miass, Chelyabinsk District, 456301, Russia
    2. Dipartimento di Geoscienze, Università degli Studi di Padova, Via Gradenigo 6, 35131, Padova, Italy
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geology
    Mineral Resources
    Mineralogy
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1866
文摘
Different genetic types of barite from colloform and clastic pyrite-rich ores from the weakly metamorphic Saf’yanovka volcanogenic massive sulfide (VMS) deposit (Central Urals) were studied in comparison with barite from the Semenov-1 and Semenov-3 seafloor hydrothermal fields (mid-Atlantic Ridge). Hydrothermal barite generally occurs as radial aggregates of tabular crystals in contrast to compact aggregates of tabular crystals with stylolite boundaries of anadiagenetic barite from the Saf’yanovka clastic ores. The Sr content in barite shows no relationship with the genetic types. The δ34S values of hydrothermal barite from both ancient and modern colloform sulfides match those of Silurian–Devonian and contemporary seawater, respectively. The lower δ34S (avg +19.6 ‰) of hydrothermal barite from the Semenov-3 clastic sulfides indicates light sulfur contribution from oxidation of fluid H2S. The higher δ34S (avg +28.1 ‰) of anadiagenetic barite from the Saf’yanovka clastic ores reflects partial thermochemical reduction of seawater sulfate. Hydrothermal barite from the Saf’yanovka and Semenov-1 colloform ores formed from low- to moderate-T (172–194 °С and 83–233 °C, respectively) relatively low salinity (1.6–4.5 and 0.6–3.8 wt% NaCleq, respectively) fluids, which underwent phase separation. Hydrothermal barite from Semenov-3 clastic sulfides associated with chalcopyrite crystallized from higher-T (266–335 °С) higher-salinity (4.8–9.2 wt% NaCleq.) fluids. The high salinity may indicate a contribution from a magmatic fluid. Anadiagenetic barite from Saf’yanovka was formed from moderate-T (140–180 °С), low- to moderate-salinity (1.4–5.4 wt% NaCleq) pore fluids. Combining our new data with those for other seafloor hydrothermal barite occurrences, the following systematics can be defined. Barite associated with pyrite-rich sulfides forms at relatively low to moderate temperatures (<230 °C), barite associated with polymetallic-rich sulfides forms at moderately high temperatures (210–280 °C), and barite in assemblage with chalcopyrite records the highest temperatures (265–335 °C). The main source of sulfur for hydrothermal barite is seawater with a small contribution of isotopically light sulfur from partial oxidation of H2S. A contribution from isotopically heavy sulfur remaining after thermochemical or bacterial partial reduction of seawater sulfate appears to be common in diagenetic/anadiagenetic barite.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700