Polynomial approximations of a class of stochastic multiscale elasticity problems
详细信息    查看全文
  • 作者:Viet Ha Hoang ; Thanh Chung Nguyen…
  • 刊名:Zeitschrift f¨¹r angewandte Mathematik und Physik
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:67
  • 期:3
  • 全文大小:773 KB
  • 刊物主题:Theoretical and Applied Mechanics; Mathematical Methods in Physics;
  • 出版者:Springer Basel
  • ISSN:1420-9039
  • 卷排序:67
文摘
We consider a class of elasticity equations in \({\mathbb{R}^d}\) whose elastic moduli depend on n separated microscopic scales. The moduli are random and expressed as a linear expansion of a countable sequence of random variables which are independently and identically uniformly distributed in a compact interval. The multiscale Hellinger–Reissner mixed problem that allows for computing the stress directly and the multiscale mixed problem with a penalty term for nearly incompressible isotropic materials are considered. The stochastic problems are studied via deterministic problems that depend on a countable number of real parameters which represent the probabilistic law of the stochastic equations. We study the multiscale homogenized problems that contain all the macroscopic and microscopic information. The solutions of these multiscale homogenized problems are written as generalized polynomial chaos (gpc) expansions. We approximate these solutions by semidiscrete Galerkin approximating problems that project into the spaces of functions with only a finite number of N gpc modes. Assuming summability properties for the coefficients of the elastic moduli’s expansion, we deduce bounds and summability properties for the solutions’ gpc expansion coefficients. These bounds imply explicit rates of convergence in terms of N when the gpc modes used for the Galerkin approximation are chosen to correspond to the best N terms in the gpc expansion. For the mixed problem with a penalty term for nearly incompressible materials, we show that the rate of convergence for the best N term approximation is independent of the Lamé constants’ ratio when it goes to \({\infty}\). Correctors for the homogenization problem are deduced. From these we establish correctors for the solutions of the parametric multiscale problems in terms of the semidiscrete Galerkin approximations. For two-scale problems, an explicit homogenization error which is uniform with respect to the parameters is deduced. Together with the best N term approximation error, it provides an explicit convergence rate for the correctors of the parametric multiscale problems. For nearly incompressible materials, we obtain a homogenization error that is independent of the ratio of the Lamé constants, so that the error for the corrector is also independent of this ratio.KeywordsLinear elasticityMultiscaleMixed problemsNearly incompressibleStochasticMultiscale homogenized problemsCorrectorGeneralized polynomial chaosBest N term approximation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700