Selective Oxidation of Sulfides to Sulfones by H2O2 Catalyzed by Fe-Substituted Sandwich Type Polyoxometalate
详细信息    查看全文
  • 作者:Hedayat Haddadi ; Mostafa Riahi Farsani
  • 关键词:Sandwich type polyoxometalates ; Sulfone ; H2O2 ; Selective oxidation
  • 刊名:Journal of Cluster Science
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 页码:373-386
  • 全文大小:1,410 KB
  • 参考文献:1.J. Nakayama and Y. Sugihara (1999). Top. Curr. Chem. 205, 131.CrossRef
    2.O. DeLucchi, D. Fabbri, and V. Lucchini (1992). Tetrahedron 48, 1485.CrossRef
    3.S. Gronowitz, G. Nikitidis, A. Hallberg, and R. Servin (1988). J. Org. Chem. 53, 3351.CrossRef
    4.C. Najera and J. M. Sansano (1998). Recent Res. Dev. Org. Chem. 2, 637.
    5.D. Mctavish, M. Buckley, and K. C. Hell (1991). Drugs 47, 138.CrossRef
    6.P. Richardson, C. J. Hawkey, and W. A. Stack (1998). Drugs 56, 307.CrossRef
    7.R. Kubec, M. Svobodov, and J. Velisek (2000). J. Agric. Food Chem. 48, 428.CrossRef
    8.M. Sovova and P. Sova (2003). Ceska Slov. Farm. 52, 82.
    9.W. Komatsu, Y. Miura, and K. Yagasaki (1998). Lipids 33, 499.CrossRef
    10.W. Qian and L. Pei (2006). Synlett 5, 709.CrossRef
    11.A. A. Linden, M. Johansson, N. Hermanns, and J.-E. Backvall (2006). J. Org. Chem. 71, 3849.CrossRef
    12.G. Maayan, R. Popovitz-Biro, and R. Neumann (2006). J. Am. Chem. Soc. 128, 4968.CrossRef
    13.J.-E. Backvall (ed.) Modern Oxidation Methods (Wiley, Weinheim, 2004), pp. 193–222.
    14.K. Kaczorowska, Z. Kolarska, K. Mitka, and P. Kowalski (2005). Tetrahedron 61, 8315.CrossRef
    15.K. Sato, M. Hyodo, M. Aoki, Z.-Q. Zheng, and R. Noyori (2001). Tetrahedron 57, 2469.CrossRef
    16.F. Vandevelde, I. W. Arends, and R. A. Sheldon (2000). J. Inorg. Biochem. 80, 81.CrossRef
    17.M. Mba, L. J. Prins, and G. Licini (2007). Org. Lett. 9, 21.CrossRef
    18.M. Mba, M. Pontini, S. Lovat, C. Zonta, G. Bernardinelli, P. E. Kundig, and G. Licini (2008). Inorg. Chem. 47, 8616.CrossRef
    19.J. Brinksma, R. La Crois, B. L. Feringa, M. I. Donnoli, and C. Rosini (2001). Tetrahedron Lett. 42, 4049.CrossRef
    20.W. D. Kerber, B. Ramdhanie, and D. P. Goldberg (2007). Angew. Chem. Int. Ed. 46, 3718.CrossRef
    21.K. Kamata, M. Kotani, K. Yamaguchi, S. Hikichi, and N. Mizuno (2007). Chem. Eur. J. 13, 639.CrossRef
    22.M. Carraro, L. Sandei, A. Sartorel, G. Scorrano, and M. Bonchio (2006). Org. Lett. 8, 3671.CrossRef
    23.M. T. Pope Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).CrossRef
    24.M. T. Pope and A. Müller (1991). Angew. Chem. Int. Ed. Engl. 30, 34.CrossRef
    25.C. L. Hill (1998). Chem. Rev., 98 (special thematic issue)
    26.M. T. Pope and A. Müller (eds.) Polyoxometalate Chemistry: From Topology via Self-assembly to Applications (Kluwer, Dordrecht, 2001).
    27.M. T. Pope and A. Müller (eds.) Polyoxometalates: From Platonic Solids to Anti-retroviral Activity (Kluwer, Dordrecht, 1993).
    28.T. Yamase, H. Fujita, and K. Fukushima (1988). Inorg. Chim. Acta 151, 15.CrossRef
    29.H. Du, C. Wang, Y. Li, Y. Niu, and H. Hou (2015). RSC Adv. 5, 74065.CrossRef
    30.C. L. Hill (2007). J. Mol. Catal. A Chem. 262, (1–2), 2.CrossRef
    31.C. L. Hill and C. M. Prosser-McCartha (1995). Coord. Chem. Rev. 143, 407.CrossRef
    32.L. Bi, U. Kortz, B. Keita, L. Nadjo, and H. Borrmann (2004). Inorg. Chem. 43, 8367.CrossRef
    33.C. L. Hill and R. B. Brown (1986). J. Am. Chem. Soc. 108, 536.CrossRef
    34.Y. Hou, L. Xu, M. J. Cichon, S. Lense, K. I. Hardcastle, and C. L. Hill (2010). Inorg. Chem. 49, 4125.CrossRef
    35.D. Sloboda-Rozner, P. Witte, P. L. Alsters, and R. Neumann (2004). Adv. Synth. Catal. 346, 339.CrossRef
    36.R. Neumann (1998). Prog. Inorg. Chem. 47, 317.CrossRef
    37.R. Neumann, in J. -E. Baeckvall (ed), Modern Oxidation Methods (Wiley, Weinheim, 2004), pp. 223–251
    38.R. Neumann, in M. Beller and C. Bolm (eds.), Transition Metals for Organic Synthesis, 2nd ed., vol. 2 (Wiley, Weinheim, 2004), pp. 415–426.
    39.R. Neumann, A. M. Khenkin, D. Juwiler, H. Miller, and M. Gara (1997). J. Mol. Catal. 117, 169.CrossRef
    40.R. Neumann and M. Gara (1995). J. Am. Chem. Soc. 117, 5066–5074.CrossRef
    41.X. Zhang, T. M. Anderson, Q. Chen, and C. L. Hill (2001). Inorg. Chem. 40, 418.CrossRef
    42.D. Sloboda-Rozner, P. L. Alsters, and R. Neumann (2003). J. Am. Chem. Soc. 125, 5280.CrossRef
    43.H. Haddadi, S. M. Hafshejani, M. R. Farsani, and A. K. Babahydari (2015). New J. Chem. 39(12), 9879.CrossRef
    44.R. Afrasiabi, F. Jalilian, B. Yadollahi, and M. R. Farsani (2014). Inorg. Chem. Commun 50, 113.CrossRef
    45.M. R. Farsani and B. Yadollahi (2014). J. Mol. Catal A 392, 8.CrossRef
    46.R. Afrasiabi, M. R. Farsani, and B. Yadollahi (2014). Tetrahedron Lett. 55, 3923.CrossRef
    47.M. R. Farsani, F. Jalilian, B. Yadollahi, and H. A. Rudbari (2014). Polyhedron 76, 102.CrossRef
    48.M. R. Farsani, B. Yadollahi, H. A. Rudbari, A. Amini, T. Caradoc-Davis, and J. R. Price (2014). Inorg. Chem. Commun. 43, 39.CrossRef
    49.M. R. Farsani, F. Jalilian, B. Yadollahi, and H. A. Rudbari (2015). Appl. Organomet. Chem. 29, 7.CrossRef
    50.F. Jalilian, B. Yadollahi, M. R. Farsani, S. Tangestaninejad, H. A. Rudbari, and R. Habibi (2015). Catal. Commun. 66, 107.CrossRef
    51.F. Jalilian, B. Yadollahi, M. R. Farsani, S. Tangestaninejad, H. A. Rudbari, and R. Habibi (2015). RSC Adv. 5, (86), 70424.CrossRef
    52.A. Tézé and G. Hervé (1990). Inorg. Synth. 27, 85.CrossRef
    53.R. G. Finke, M. W. Droege, and P. J. Domaille (1987). Inorg. Chem. 26, 3886.CrossRef
    54.T. J. R. Weakley and R. G. Finke (1990). Inorg. Chem. 29, 1235.CrossRef
    55.X. Zhang, Q. Chen, D. C. Duncan, R. J. Lachicotte, and C. L. Hill (1997). Inorg. Chem. 36, 4381.CrossRef
    56.C. J. Gomez-Garcia, E. Coronado, P. Gomez-Romero, and N. Casan-Pastor (1993). Inorg. Chem. 32, 3381.
    57.I. C. M. S. Santos, J. A. F. Gamelas, M. S. S. Balula, M. M. Q. Simoes, M. G. P. M. S. Neves, J. A. S. Cavaleiro, and A. M. V. Cavaleiro (2007). J. Mol. Catal. A Chem. 262, 41.CrossRef
    58.U. Kortz, S. Isber, M. H. Dickman, and D. Ravot (2000). Inorg. Chem. 39, 2915.CrossRef
    59.P. E. Car, M. Guttentag, K. K. Baldridge, R. Albertoa, and G. R. Patzke (2012). Green Chem. 14, 1680.CrossRef
    60.L. H. Bi, R. D. Huang, J. Peng, E. B. Wang, Y. H. Wang, and C. W. Hu (2001). J. Chem. Soc. Dalton Trans. doi:10.​1039/​B006804G .
    61.R. Neumann and M. Gara (1994). J. Am. Chem. Soc. 116, 5509.CrossRef
    62.S. Nlate, L. Plault, and D. Astruc (2006). Chem. Eur. J. 12, 903.CrossRef
    63.D. C. Duncan, R. C. Chambers, E. Hecht, and C. L. Hill (1995). J. Am. Chem. Soc 117, 681.CrossRef
    64.M. Carraro, L. Sandei, A. Sartorel, G. Scorrano, and M. Bonchio (2006). Org. Lett. 8, 3671.CrossRef
    65.Z. E. A. Abdallaa, B. Li, and A. Tufail (2009). Colloids Surf. A 341, 86.CrossRef
    66.N. Mizuno, K. Yamaguchi, and K. Kamata (1944). Coord. Chem. Rev. 2005, 249.
    67.K. Kamata, K. Yonehare, Y. Sumida, K. Yamaguchi, S. Hikichi, and N. Mizuno (2003). Science. 300, 964.CrossRef
    68.K. Kamata, K. Yonehara, Y. Nakagawa, K. Uehara, and N. Mizuno (2010). Nat. Chem. 2, 478.CrossRef
    69.Q. Yin, J. M. Tan, C. Besson, Y. M. Geletiij, D. G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle, and C. L. Hill (2010). Science 328, 342.CrossRef
    70.J. J. Stracke and R. G. Finke (2011). J. Am. Chem. Soc. 133, 14872.CrossRef
    71.A. M. Morris, O. P. Anderson, and R. G. Finke (2009). Inorg. Chem. 48, 4411.CrossRef
    72.A. Nisar, Y. Lu, J. Zhuang, and X. Wang (2011). Angew. Chem. 123, 3245.CrossRef
  • 作者单位:Hedayat Haddadi (1)
    Mostafa Riahi Farsani (2)

    1. Department of Chemistry, Faculty of Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran
    2. Department of Chemistry, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Inorganic Chemistry
    Physical Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-8862
文摘
Catalytic activity of the sandwich-type heteropolytungstates ([(XW9O39)M4](n−m)−, where X = P, Si, As and M = Mn, Fe, Co, Ni, Cu and Zn) in the selective oxidation of sulfides to corresponding sulfone with aqueous H2O2 have been studied in acetonitrile. In comparison, different sandwich type polyoxometalates with various transition metals substituted and heteroatoms, TBAPWFe was found to be more active to each other’s. This catalyst with 2.5 equivalent of hydrogen peroxide, converted various sulfides to the corresponding sulfone with 96.8–99 % selectivity at 94–97 % conversion. Furthermore, for oxidizing various sulfides to the corresponding sulfone, the sulfide function is highly reactive and other functional groups such as the double bond and hydroxyl group are tolerable. This catalyst indicated very good reusability in the oxidation reaction. Keywords Sandwich type polyoxometalates Sulfone H2O2 Selective oxidation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700