Investigation of volatile aliphatic and aromatic amine detection using a fluorescent pH indicator ethyl eosin in polymer matrices
详细信息    查看全文
  • 作者:B. B. Meshkov (1)
    D. S. Ionov (1)
    A. V. Koshkin (1)
    M. V. Alfimov (1)
    V. A. Livshits (1)
  • 刊名:Nanotechnologies in Russia
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:9
  • 期:5-6
  • 页码:237-244
  • 全文大小:
  • 参考文献:1. W. L. Gong, K. J. Sears, J. E. Alleman, and E. R. Blatchley, 鈥淭oxicity of model aliphatic amines and their chlorinated forms,鈥?Environ. Toxicol. Chem. 23(2), 239鈥?44 (2004). CrossRef
    2. B. Timmer, W. Olthuis, and A. van den Berg, 鈥淎mmonia sensors and their applications-a review,鈥?Sen. Actuators 107(2), 666鈥?77 (2005). CrossRef
    3. K. Tsubaki, D. Tanima, and K. Fuji, 鈥淐olorimetric recognition based on functional phenolphthalein derivatives,鈥?J. Synthet. Organ. Chem. Jpn. 69(3), 266鈥?77 (2011). CrossRef
    4. M. Krizek, F. Vacha, L. Vorlova, J. Lukasova, and S. Cupakova, 鈥淏iogenic amines in vacuum-packed and nonvacuum-packed flesh of carp (Cyprinus Carpio) stored at different temperatures,鈥?Food Chem. 88(2), 185鈥?91 (2004). CrossRef
    5. C. Ruiz-Capillas and F. Jimenez-Colmenero, 鈥淏iogenic amines in meat and meat products,鈥?Crit. Rev. Food Sci. Nutrition 44(7鈥?), 489鈥?99 (2004).
    6. J. F. Giuliani, H. Wohltjen, and N. L. Jarvis, 鈥淩eversible optical-waveguide sensor for ammonia vapors,鈥?Opt. Lett. 8(1), 54鈥?6 (1983). CrossRef
    7. T. Mayr, K. Waich, and I. Klimant, 鈥淔luorescence sensors for trace monitoring of dissolved ammonia,鈥?Talanta 77(1), 66鈥?2 (2008). CrossRef
    8. K. I. Oberg, R. Hodyss, and J. L. Beauchamp, 鈥淪imple optical sensor for amine vapors based on dyed silica microspheres,鈥?Sens. Actuators 115(1), 79鈥?5 (2006). CrossRef
    9. J. Courbat, D. Briand, J. Damon-Lacoste, J. Wollenstein, and N. F. de Rooij, 鈥淓valuation of PH indicator-based colorimetric films for ammonia detection using optical waveguides,鈥?Sens. Actuators 143(1), 62鈥?0 (2009). CrossRef
    10. D. Escudero, S. Trupp, B. Bussemer, G. J. Mohr, and L. Gonzalez, 鈥淪pectroscopic properties of azobenzene-based PH indicator dyes: a quantum chemical and experimental study,鈥?J. Chem. Theory Comput. 7(4), 1062鈥?072 (2011). CrossRef
    11. D. Staneva, R. Betcheva, and J. M. Chovelon, 鈥淥ptical sensor for aliphatic amines based on the simultaneous colorimetric and fluorescence responses of smart textile,鈥?J. Appl. Polym. Sci. 106(3), 1950鈥?956 (2007). CrossRef
    12. M. R. Shahriari, Q. Zhou, and G. H. Sigel, 鈥淧orous optical fibers for high-sensitivity ammonia-vapor sensors,鈥?Opt. Lett. 13(5), 407鈥?09 (1988). CrossRef
    13. D. Staneva, R. Betcheva, and J. M. Chovelon, 鈥淔luorescent benzo[de]anthracen-7-one pH-sensor in aqueous solution and immobilized on viscose fabrics,鈥?J. Photochem. Photobiol. A: Chem. 183(1鈥?), 159鈥?64 (2006). CrossRef
    14. Z. L. Tang, J. H. Yang, J. Y. Yu, and B. Cui, 鈥淎 colorimetric sensor for qualitative discrimination and quantitative detection of volatile amines,鈥?Sensors 10(7), 6463鈥?476 (2010). CrossRef
    15. S. Q. Tao, L. Xu, and J. C. Fanguy, 鈥淥ptical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers,鈥?Sens. Actuators 115(1), 158鈥?63 (2006). CrossRef
    16. J. M. Charlesworth and C. A. McDonald, 鈥淎 fibreoptic fluorescing sensor for amine vapours,鈥?Sens. Actuators 8, 137鈥?42 (1992). CrossRef
    17. R. H. Yang, K. M. Wang, and D. Xiao, 鈥淎 host-guest optical sensor for aliphatic amines based on lipophilic cyclodextrin,鈥?Fresenius J. Anal. Chem. 367, 429鈥?35 (2006). CrossRef
    18. X. Zhang, X. Liu, R. Lu, H. Zhang, and P. Gong, 鈥淔ast detection of organic amine vapors based on fluorescent nanofibrils fabricated from triphenylamine functionalized beta-diketone-boron difluoride,鈥?J. Mater. Chem. 22, 1167 (2012). CrossRef
    19. Ha Na Kim, K. M. K. Swamy, and Juyoung Yoon, 鈥淪tudy on various fluorescein derivatines as pH sensors,鈥?Tetrahedron Lett. 52, 2340鈥?343 (2011). CrossRef
    20. Li-jun Ma, W. Cao, J. Liu, D. Deng, Y. Wu, Y. Yan, and L. Yang, 鈥淎 highly selective and sensitive fluorescence dual-responsive pH probe in water,鈥?Sen. Actuators B: Chem. 169, 243鈥?47 (2012). CrossRef
    21. X. Zhang, X. Liu, R. Lu, H. Zhang, and P. Gong, 鈥淔ast detection of organic amine vapors based on fluorescent nanofibrils fabricated from triphenylamine functionalized beta-diketone-boron difluoride,鈥?J. Mater. Chem. 22, 1167 (2012). CrossRef
    22. B. B. Meshkov, I. V. Ionova, V. P. Tsybyshev, M. V. Alfimov, and V. A. Livshits, 鈥淐omplexation of a gaseous spin probe with cyclodextrins bound to the silica microspheres: molecular dynamics of the complexed probes and the effect of aromatic hydrocarbon vapors on it,鈥?Nanotech. Russ. 8(7-8), 592 (2013).
    23. K. Waich, T. Mayr, and I. Klimant, 鈥淢icrosensors for detection of ammonia at ppb-concentration levels,鈥?Measur. Sci. Technol. 18(10), 3195鈥?201 (2007). CrossRef
    24. L. V. Voronina, V. A. Livshits, and M. V. Alfimov, 鈥淪tudies of possibility of detecting aromatic hydrocarbons in gas phase on the basis of fluorescence of host-guest complexes with cyclodextrins immobilized on silica microspheres,鈥?Nanotechnol. Russ., No. 7鈥?, 444鈥?55 (2011).
    25. R. M. C. Dawson, D. C. Elliott, W. H. Elliott, and K. M. Jones, / Data for Biochemical Research, 3rd ed. (Clarendon Press, Oxford, 1986).
    26. V. A. Rabinovich and Z. Ya. Khavin, / Brief Chemical Handbook (Khimiya, Leningrad, 1978) [in Russian].
    27. / Ionization Constants of Inorganic Acids and Bases in Aqueous Solution, Ed. by D. D. Perrin (Pergamon Press, Oxford, 1982).
    28. H. K. Hall, 鈥淐orrelation of the base strengths of amines1,鈥?J. Am. Chem. Soc. 79(20), 5441鈥?444 (1957). CrossRef
    29. R. Linnell, 鈥淣otes-dissociation constants of 2-substituted pyridines,鈥?J. Organ. Chem. 25(2), 290鈥?90 (1960). CrossRef
    30. A. A. Khlebunov, D. S. Ionov, P. V. Komarov, V. M. Aristarkhov, V. A. Sazhnikov, A. N. Petrov, and M. V. Alfimov, 鈥淓xperimental complex for researching characteristics of optical sensor materials,鈥?Prib. Tekh. Eksp., No. 1, 1鈥? (2009).
  • 作者单位:B. B. Meshkov (1)
    D. S. Ionov (1)
    A. V. Koshkin (1)
    M. V. Alfimov (1)
    V. A. Livshits (1)

    1. Photochemistry Center, Russian Academy of Sciences, ul. Novatorov 7a, Moscow, Russia
  • ISSN:1995-0799
文摘
Changes in the fluorescence spectra (F) of ethyl eosin (EE) embedded into polymer matrices of different compositions, gas permeability, and polarity under the action of gaseous aliphatic and aromatic amines (dimethylamine (DMA), trimethylamine (TMA), and pyridine (Pyr)), depending on the pH and the structure of polymer matrix, were investigated. Organic methanesulfonic acid was used to adjust pH in a polymer matrix. Cellulose acetate-propionate (CAP), polyvinyl trimethylsilane (PVTMS), polyethylene oxide (PEO), and polyvinylpyrrolidone (PVP), as well as mesoporous silica gel microspheres, were used as polymer matrices. Absorption and fluorescence maxima of EE in solution and in most polymers are in the region of 505 nm and 550 nm, respectively. The maximum of EE fluorescence intensity increases in all polymer matrices except for PVP in the presence of amines, while the F decreases in the PVP matrix and silica gel microspheres. The fluorescence response to DMA is higher than to TMA and Pyr for all the polymers; the F response is two-phase in the case of Pyr: an increase in F followed by a decrease. Characteristic response times for different matrices change in a sequence: CAP < PVP < PEO < MS < PVTMS. These differences are probably due to the different contributions to the process of the analyte diffusion, its affinity to the polymer, and the internal polarity of the polymer matrix for different polymers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700