Current state and prospects of manufacturing and operation of methane-based fuel cells (review)
详细信息    查看全文
  • 作者:A. A. Ponomareva ; A. G. Ivanova ; O. A. Shilova…
  • 关键词:fuel cell ; electrode materials ; solid electrolyte ; liquid electrolyte ; interelectrode membranes ; catalytic layer ; methane ; hydrogen and hydrocarbon fuel
  • 刊名:Glass Physics and Chemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:42
  • 期:1
  • 页码:1-19
  • 全文大小:536 KB
  • 参考文献:1.Shishkin, V.A., Kruchinina, I.Yu., and Shurpyak, V.K., Prospects for the use of fuel cells in the transport of liquefied natural gases, Nauchno-Tekhn. Sb. Ross. Morsk. Registra Sudokhodstva, 2014, no. 37, pp. 45–50.
    2.Shilova, O.A., Kruchinina, I.Yu., Ivanova, A.G., Zagrebel’nyi, O.A., Khamova, T.V., and Tsvetkova, I.N., Development and investigation of the electromechanical properties of hydrogenair portable fuel cells, in Magnitolevitatsionnye transportnye sistemy i tekhnologii. Sbornik materialov 2-oi Mezhdunarodnoi konferentsii, Sankt-Peterburg (Proceedings of the Second International Scientific Conference on Magnetic Levitation Transport Systems and Technologies, St. Petersburg, 2014), Professor Antonov, Yu.F., Ed., Kirov, Russia: The International Centre for Research Projects (MTsNIP), 2014, p. 162.
    3.Danilevich, Ya.B., Zhabrev, V.A., Goncharov, V.D., Kruchinina, I.Yu., Mironov, B.N., Tsvetkova, I.N., Khamova, T.V., and Shilova, O.A., Development of the technology for preparing and storing hydrogen with the use of nanostructured materials for an autonomous integrated wind power plant, Glass Phys. Chem., 2009, vol. 35, no. 5, pp. 650–664.CrossRef
    4.Petricca, L., Ohlckers, P., and Chen, X., The future of energy storage systems, in Energy Storage—Technologies and Applications, Dr. Ahmed Zobaa, Ed., Rijeka, Croatia: InTech, 2013, chapter 5, pp. 113–130.
    5.Karpova, S.S., Kompan, M.E., Maksimov, A.I., Moshnikov, V.A., Sapurina, I.Yu., Spivak, Yu.M., Terukov, E.I., Terukova, E.E., Titkov, A.N., Tomasov, E.I., Shilova, O.A., and Shishov, M.A., in Osnovy vodorodnoi energetiki (Fundamentals of Hydrogen Power Engineering), Moshnikov, V.A. and Terukov, E.I., Eds., St. Petersburg: St. Petersburg State Electrotechnical University “LETI,” 2011.
    6.Smith, B.H., Development of solid oxide fuel cell electrodes with high conductivity and enhanced redox stability, Master’s Theses, Lewisburg, Pennsylvania, United States: Bucknell University, 2010, p. 115.
    7.Korovin, N.V., Elektrokhimicheskaya energetika (Electrochemical Power Engineering), Moscow: Energoatomizdat, 1991.
    8.Stambouli, A.B. and Traversa, E., Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy, Renewable Sustainable Energy Rev., 2002, vol. 6, pp. 433–455.CrossRef
    9.Haile, S.M., Fuel cell materials and components, Acta Mater., 2003, vol. 51, pp. 5981–6000.CrossRef
    10.Shilova, O.A. and Tsvetkova, I.N., A method for the preparation of the silico-phosphate proton-conducting material predominantly for membranes of fuel cells (variants), RF Patent 2505481, applied April 28, 2011, published January 27, 2014, Byull. Izobret., 2014, no. 3, p. 11.
    11. The Fuel Cell Today Industry Review 2012, London: Fulmar Colour Printing, 2012.
    12. The Fuel Cell Today Industry Review 2013, London: Fulmar Colour Printing, 2013.
    13.McPhail, S., Moreno, A., and Bove, R., International status of molten carbonate fuel cell (MCFC) technology, Rep. RSE, 2009.
    14.Sobyanin, V.A., High-temperature solid oxide fuel cells and methane conversion, Ross. Khim. Zh., 2003, vol. 47, pp. 62–70.
    15.Portal “Shema,” Novye tverdooksidnye toplivnye elementy b’yut rekord effektivnosti (New Solid Oxide Fuel Cells Hit the Record of the Efficiency). www.shema.ru/news/view/728/.
    16.Portal “Compulenta,” Section “Science and Technology,” Kompaktnye tverdooksidnye metanovye toplivnye elementy dostigli rekordnoi effektivnosti (Compact Methane Solid Oxide Fuel Cells Have Reached the Record Efficiency). http://​science.​compulenta.​ru/​683764/​.​

17.Koval’, N.N., Otchet o nauchno-issledovatel’skoi rabote v ramkakh federal’noi tselevoi programmy “Nauchnye i nauchno-pedagogicheskie kadry innovatsionnoi Rossii” na 2009–2013 po Gosudarstvennomu kontraktu 14.740.11.0845 ot 1.12.2010 po teme “Izgotovlenie srednetemperaturnykh tverdooksidnykh toplivnykh elementov s ul’tratonkim nanostrukturirovannym elektrolitom,” 2012 (Report on the Research Work Performed within the Framework of the Federal Target Program “Scientific and ScientificPedagogical Personnel of the Innovative Russia” for 2009–2013, State Contract No. 14.740.11.0845, December 1, 2010, Subject Matter “Fabrication of Medium-Temperature Solid Oxide Fuel Cells with an Ultrathin Nanostructured Electrolyte,” 2012).
18.Portal “Prospective Technologies of the XXI Century,” Otchet o NIOKR po teme “Razrabotka i sozdanie opytnopromyshlennogo proizvodstva energeticheskikh ustanovok na toplivnykh elementakh dlya avtonomnoi rezervnoi i avariinoi energetiki,” 2014 (Report on Research and Development on the Subject Matter “Development and Fabrication of Pilot Production of Fuel Cell Power Plants for Autonomous Reserve and Emergency Power Engineering,” 2014). http://​pt21.​ru/​content/​view/​76/​40/​lang,ru/.
19.The use of fuel cells for energy supply of buildings, AVOK, 2004, no. 2. http://​www.​abok.​ru/​for_​spec/​articles.​php?​nid=​2340.​

20.Saidanov, V.O., Agafonov, A.N., Avakov, V.B., and Landgraf, I.K., A method of operating a combined power plant for the joint generation of electric and thermal power, RF Patent 2206777, published June 20, 2003, Byull. Izobret., 2003, no. 17.
21.Khater, H.A., Abdelsalam, O.E., Hanafy, M.M., and Abdelraouf, Y.A., Modeling of a methane fueled proton exchange membrane fuel cell system, Proceedings of the Seventh International Energy Conversion Engineering Conference, Denver, Colorado, United States, 2009 (AIAA Pap., no. 2009-4589).
22.Korup, O., Schlögl, R., and Horn, R., Carbon formation in catalytic partial oxidation of methane on platinum: Model studies on a polycrystalline Pt foil, Catal. Today, 2012, vol. 181, no. 1, pp. 177–183.CrossRef
23.Hanna, J., Lee, W.Y., Shi, Y., and Ghoniem, A.F., Fundamentals of electroand thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels, Prog. Energy Combus. Sci., 2014, vol. 40, pp. 74–111.CrossRef
24.Steele, B.C.H., Fuel-cell technology: Running on natural gas, Nature (London), 1999, vol. 400, pp. 619–621.CrossRef
25.Lai, B.-K., Kerman, K., and Ramanathan, Sh., Methane-fueled thin film micro-solid oxide fuel cells with nanoporous palladium anodes, J. Power Sources, 2011, vol. 196, no. 15, pp. 6299–6304.CrossRef
26.Yentekakis, I.V., Openand closed-circuit study of an intermediate temperature SOFC directly fueled with simulated biogas mixtures, J. Power Sources, 2006, vol. 160, no. 1, pp. 422–425.CrossRef
27.McIntosh, S. and Gorte, R.J., Direct hydrocarbon solid oxide fuel cells, Chem. Rev., 2004, vol. 104, no. 10, pp. 4845–4866.CrossRef
28.Kaltschmitt, T. and Deutschmann, O., Fuel Processing for Fuel Cells, Burlington, Vermont, United States: Academic, 2012, pp. 1–64.
29.Hibino, T., Hashimoto, A., Inoue, T., Tokuno, J., Yoshida, Sh., and Sano, M., A low-operating-temperature solid oxide fuel cell in hydrocarbonair mixtures, Science (Washington), 2000, vol. 288, no. 5473, pp. 20312033.CrossRef
30.Zuo, Ch., Liu, M., and Liu, M., Chapter 2: Solid oxide fuel cells, in Sol–Gel Processing for Conventional and Alternative Energy, Aparicio, M., Jitianu, A., and Klein, L.C., Eds., in Advances in Sol-Gel Derived Materials and Technology, New York: Springer-Verlag, 2012, pp. 7–36.
31.Radhika, D. and Neseraj, A.S., Materials and components for low temperature solid oxide fuel cells—An overview, Int. J. Renewable Energy Dev., 2013, vol. 2, no. 2, pp. 87–95.
32.Gellings, P.J. and Bouwmeester, H.J.M., Ion and mixed conducting oxides as catalysts, Catal. Today, 1992, vol. 12, no. 1, pp. 1–105.CrossRef
33.Mirzababaei, J. and Chuang, S.S.C., La0.6Sr0.4Co0.2Fe0.8O3 perovskite: A stable anode catalyst for direct methane solid oxide, Catalysts, 2014, vol. 4, no. 2, pp. 146–161.CrossRef
34.Fastovskii, V.G., Metan (Methane), Moscow: Gostekhizdat, 1947.
35.Sergeev, G.B., Nanokhimiya: Uchebnoe posobie (Nanochemistry: A Textbook), Moscow: KDU, 2007.
36.Litster, S. and McLean, G., PEM fuel cell electrodes, J. Power Sources, 2004, vol. 130, pp. 61–76.CrossRef
37.Ivanchev, S.S. and Myakin, S.V., Polymer membranes for fuel cells: Preparation, structure, modification, and properties, Usp. Khim., 2010, vol. 79, no. 2, pp. 117–134.CrossRef
38.Dobrovol’skii, Yu.A., Volkov, E.V., Pisareva, A.V., Fedotov, Yu.A., Likhachev, D.Yu., and Rusanov, A.L., Proton-exchange membranes for hydrogenair fuel cells, Ross. Khim. Zh., 2006, vol. 50, pp. 95–104.
39.Tsvetkova, I.N., Shilova, O.A., Voronkov, M.G., Gomza, Yu.P., and Sukhoy, K.M., Sol–gel synthesis and investigation of proton-conducting hybrid organicinorganic silicophosphate materials, Glass Phys. Chem., 2008, vol. 34, no. 1, pp. 68–76.CrossRef
40.Sukhyy, K.M., Gomza, Yu.P., Belyanovskaya, E.A., Klepko, V.V., Shilova, O.A., and Sukhyy, M.P., Resistive humidity sensors based on proton-conducting organicinorganic silicophosphates doped by polyionenes, J. Sol–Gel Sci. Technol., 2015, vol. 74, no. 2, pp. 472–481.CrossRef
41.Hickner, M.A., Ghassemi, H., Kim, Yu.S., Einsla, B.R., and McGrath, J.E., Alternative polymer systems for proton exchange membranes (PEMs), Chem. Rev., 2004, vol. 104, no. 10, pp. 4587–4612.CrossRef
42.Jannasch, P., Recent developments in high-temperature proton conducting polymer electrolyte membranes, Curr. Opin. Colloid Interface Sci., 2003, vol. 8, no. 1, pp. 96–102.CrossRef
43.Nechitailov, A.A., Khamova, T.V., Shilova, O.A., Remenyuk, A.D., and Tomasov, A.A., Properties of proton-conducting materials formed by the sol–gel method, Russ. J. Appl. Chem., 2009, vol. 82, no. 6, pp. 986–990.CrossRef
44.Remenyuk, A.D., Khamova, T.V., Nechitailov, A.A., Shilova, O.A., Tomasov, A.A., Trapeznikova, I.N., and Shilova, O.A., Thermal stability of proton-conducting silicophosphate materials formed by sol–gel method, Russ. J. Electrochem., 2009, vol. 45, no. 5, pp. 609–614.CrossRef
45.Myakin, S.V., Sychev, M.M., Vasina, E.S., Ivanova, A.G., Zagrebel’nyi, O.A., Tsvetkova, I.N., and Shilova, O.A., Relationship between the composition of functional groups on the surface of hybrid silicophosphate membranes and their proton conductivity, Glass Phys. Chem., 2014, vol. 40, no. 1, pp. 97–98.CrossRef
46.Wang, Y., Chen, K.S., Mishler, J., Chan Cho, S., and Adroher, X.C., A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, 2011, vol. 88, no. 4, pp. 981–1007.CrossRef
47.Shilova, O.A. Shilov, V.V., Koshel’, N.D., and Kozlova, E.V., Formation of catalytic layers from tetraethoxysilane-based sols for use in polymer fuel cells, Glass Phys. Chem., 2004, vol. 30, no. 1, pp. 98–100.CrossRef
48.Nechitailov, A.A., Khamova, T.V., Zvonareva, T.K., Shilova, O.A., Astrova, E.V., and Sreseli, O.M., A method for the preparation of a catalyst layer of the fuel cell, RF Patent 2358359, December 26, 2007.
49.Zelenay, P., Advanced cathode catalysts, in 2010 Hydrogen Program Annual Merit Review and Peer Evaluation Meeting, Washington, DC, 2010, Project ID: FC005.
50.Morris, J.M. and Song, Jin, Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells, J. Hazard. Mater., 2012, vols. 213–214, pp. 474–477.CrossRef
51.Zhen He, Wagner, N., Minteer, S.D., and Angenent, L.T., An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy, Environ. Sci. Technol., 2006, vol. 40, no. 17, pp. 5212–5217.CrossRef
52.Rabaey, K. and Verstraete, W., Microbial fuel cells: Novel biotechnology for energy generation, Trends Biotechnol., 2005, vol. 23, no. 6, p. 291.CrossRef
53.Adachi, M., Shimomura, T., Komatsu, M., Yakuwa, H., and Miya, A., A novel mediatorpolymer-modified anode for microbial fuel cells, Chem. Commun., 2008, vol. 17, no. 17, pp. 2055–2057.CrossRef
54.Baranton, S. and Bélanger, D., Electrochemical derivatization of carbon surface by reduction of in situ generated diazonium cations, J. Phys. Chem., 2005, vol. 109, no. 51, pp. 24401–24410.CrossRef
55.Geiger, W.E. and Barrière, F., Organometallic electrochemistry based on electrolytes containing weaklycoordinating fluoroarylborate anions, Acc. Chem. Res., 2010, vol. 43, no. 7, pp. 1030–1039.CrossRef
56.Ghasemi, M., Shahgaldi, S., Ismail, M., Yaakob, Z., and Daud, W.R.W., New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems, Chem. Eng. J., 2012, vol. 184, pp. 82–89.CrossRef
57.Ghasemi, M., Daud, W.R.W., Rahimnejad, M., Rezayi, M., Fatemi, A., Jafari, Y., Somalu, M.R., and Manzour, A., Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells, Int. J. Hydrogen Energy, 2013, vol. 38, no. 22, pp. 9533–9540.CrossRef
58.Liu, H., Matsuda, S., Kawai, T., Hashimoto, K., and Nakanishi, S., Feedback stabilization involving redox states of c-type cytochromes in living bacteria, Chem. Commun. (Cambridge), 2011, vol. 47, pp. 3870–3872.CrossRef
59.Huang, X., Fuel cells in energy production, Bachelor’s Thesis, Kuopio, Finland: Savonia University of Applied Sciences, 2011.
60. The use of fuel cells for energy supply of buildings, AVOK, 2004, no. 2. http://​www.​abok.​ru/​for_​spec/​articles.​php?​nid=​2340.​

61.Antolini, E., The stability of molten carbonate fuel cell electrodes: A review of recent improvements, Appl. Energy, 2011, vol. 88, no. 12, pp. 4274–4293.CrossRef
62.Steinberg, M., Natural gas direct carbon fuel cell, US Patent 7910258, March 22, 2011.
63.Randström, S., New materials for the molten carbonate fuel cell, Doctoral Thesis, Stockholm, Sweden: KTH—Chemical Science and Engineering, Department of Chemical Engineering and Technology, 2008, p. 54.
64.Dicks, A.L., Molten carbonate fuel cells, Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, no. 5, pp. 379–383.CrossRef
65.McPhail, S.J., Aarva, A., Devianto, H., Bove, R., and Moreno, A., SOFC and MCFC: Commonalities and opportunities for integrated research, Int. J. Hydrogen Energy, 2011, vol. 36, no. 16, pp. 10337–10345.CrossRef
66.Frangini, S., Physico-chemical properties of molten alkali carbonate electrolytes modified by small additions of rare earth oxides, in Fundamental and Developments of Fuel Cells Conference (FDFC2008), Nancy, France, 2008.
67.Kulkarni, A. and Giddey, S., Materials issues and recent developments in molten carbonate fuel cells, J. Solid State Electrochem., 2012, vol. 16, no. 10, pp. 3123–3146.CrossRef
68. Perovskite Oxide for Solid Oxide Fuel Cells: Chapter 2. Overview of Intermediate-Temperature Solid Oxide Fuel Cells, Ishihara, T., Ed., Berlin: Springer-Verlag, 2009, pp. 17–43.CrossRef
69.Guan, W.B., Zhai, H.J., Jin, L., Li, T.S., and Wang, W.G., Effect of contact between electrode and interconnect on performance of SOFC stacks, Fuel Cells, 2011, vol. 11, no. 3, pp. 445–450.CrossRef
70.Tietz, F., Buchkremer, H.-P., and Stöver, D., Components manufacturing for solid oxide fuel cells, Solid State Ionics, 2002, vols. 152–153, pp. 373–381.CrossRef
71.Kee, R.J., Zhu, H., Braun, R.J., and Vincent, T.L., Modeling the steady-state and dynamic characteristics of solid-oxide fuel cells, Adv. Chem. Eng., 2012, vol. 41, pp. 331–381.CrossRef
72.Xiao, H. and Reitz, T., Anode-supported solid oxide fuel cells with thin film electrolyte for operation at reduced temperatures, ECS Trans., 2006, vol. 1, no. 7, pp. 201–208.CrossRef
73.Jacobson, C.P., Visco, S.J., and De Jonghe, L.C., Cathode supported thin film SOFCs, in Conference Proceedings of Eighth International Symposium on Solid Oxide Fuel Cells (SOFC VIII). Session: Cell Design, Processing, and Performance, Paris, April 27May 2, 2003, Pennington, New Jersey, United States: Electrochemical Society, 2003, abstract no. 1892.
74.Chen, X.J., Liu, Q.L., Chan, S.H., Brandon, N.P., and Khor, K.A., High performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane, Electrochem. Commun., 2007, vol. 9, no. 4, pp. 767–772.CrossRef
75.Will, J., Mitterdorfer, A., Kleinlogel, C., Perednis, D., and Gauckler, L.J., Fabrication of thin electrolytes for second-generation solid oxide fuel cells, Solid State Ionics, 2000, vol. 131, issues 1–2, pp. 79–96.CrossRef
76.Laosiripojana, N., Wiyaratn, W., Kiatkittipong, W., Arpornwichanop, A., Soottitantawat, A., and Assabumrungrat, S., Reviews on solid oxide fuel cell technology, Energy Environ., 2009, vol. 13, no. 1, pp. 65–84.
77.Morozova, L.V., Kalinina, M.V., Koval’ko, N.Yu., Arsent’ev, M.Yu., and Shilova, O.A., Preparation of zirconia-based nanoceramics with a high degree of tetragonality, Glass Phys. Chem., 2014, vol. 40, no. 3, pp. 352–355.CrossRef
78.Portal “Wikipedia,” Gadolinium-Doped Ceria. http://​en.​wikipedia.​org/​wiki/​Gadolinium-doped_​ceria.​

79.Liu, M., Lynch, M.E., Blinn, K., Alamgir, F.M., and Choi, Y.M., Rational SOFC material design: New advances and tools, Mater. Today, 2011, vol. 14, no. 11, pp. 534–546.CrossRef
80.Chao, C.-C., Hsu, C.-M., Cui, Y., and Prinz, F.B., Improved solid oxide fuel cell performance with nanostructured electrolytes, ACS Nano, 2011, vol. 5, no. 7, pp. 5692–5696.CrossRef
81.Xu, X., Xia, Ch., Xiao, G., and Peng, D., Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes, Solid State Ionics, 2005, vol. 176, pp. 1513–1520.CrossRef
82.Park, Y.M. and Kim, H., Composite cathodes based on Sm0.5Sr0.5CoO3–d with porous Gd-doped ceria barrier layers for solid oxide fuel cells, Int. J. Hydrogen Energy, 2012, vol. 37, no. 20, pp. 15320–15333.CrossRef
83.Kovalenko, A.S., Shilova, O.A., Morozova, L.V., Kalinina, M.V., Drozdova, I.A., and Arsent’ev, M.Yu., Features of the synthesis and the study of nanocrystalline cobalt–nickel spinel, Glass Phys. Chem., 2014, vol. 40, no. 1, pp. 106–113.CrossRef
84.Shilova, O.A., Gubanova, N.N., Matveev, V.A., Bairamukov, V.Yu., and Kobzev, A.P., Composition, structure, and morphology of the surface of nanoscale platinum-containing films prepared from sols, Glass Phys. Chem., 2015, vol. 40, no. 1 (in press).
85.Anderson, R.B., Stein, K.C., Feenan, J.J., and Hofer, L.J.E., Catalytic oxidation of methane, Ind. Eng. Chem., 1961, vol. 53, no. 10, pp. 809–812.CrossRef
86.Kalinina, M.V., Morozova, L.V., Khlamov, I.I., Tikhonov, P.A., and Shilova, O.A., Composite electrodes based on oxides of dand f-elements and carbon nanolayers, Russ. J. Appl. Chem., 2016 (in press).
87.Arsent’ev, M.Yu., Kalinina, M.V., Tikhonov, P.A., Morozova, L.V., Kovalenko, A.S., Koval’ko, N.Yu., Khlamov, I.I., and Shilova, O.A., Synthesis and study of sensor oxide nanofilms in a ZrO2–CeO2 system, Glass Phys. Chem., 2014, vol. 40, no. 3, pp. 362–366.CrossRef
88.Remick, R. and Wheeler, D., Molten carbonate and phosphoric acid stationary fuel cells: Overview and gap analysis, NREL/TP Tech. Rep., 2010, no. NREL/TP560-49072.
89.Kalinina, M.V., Morozova, L.V., Kovalenko, A.S., Khlamov, I.I., Polyakova, I.G., and Shilova, O.A., Synthesis and physico-chemical properties of biceramic electrode nanocomposites based on oxides of dand f-elements, Fiz. Khim. Stekla, 2012, vol. 38, no. 6, pp. 951–956.
90.Rabaey, K., Lissens, G., and Verstraete, W., Microbial fuel cells: Performances and perspectives, in Biofuels for Fuel Cells: Renewable Energy from Biomass Fermentation, Lens, P., Westermann, P., Haberbauer, M., and Moreno, A., Eds., London: IWA, 2005, pp. 377–399.
  • 作者单位:A. A. Ponomareva (1)
    A. G. Ivanova (1)
    O. A. Shilova (1) (2)
    I. Yu. Kruchinina (1) (2)

    1. Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Science, ul. Makarova 2, St. Petersburg, 199034, Russia
    2. St. Petersburg State Electrotechnical University LETI, ul. Professora Popova 5, St. Petersburg, 197376, Russia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Ceramics,Glass,Composites,Natural Materials
    Characterization and Evaluation Materials
    Materials Science
    Physical Chemistry
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-313X
  • 文摘
    This paper is a review of the current state of the problem of the development and manufacturing of fuel cells (FCs). The technical features of FCs that are promising for the use of methane as a fuel are considered. The physico-chemical characteristics of the materials for the basic FC components applicable for the use of methane are analyzed. In this review, information on the FCs developed, their electrophysical characteristics, and production technologies is presented. The basic problems that occur during the operation of FCs are described. Promising trends for the development of methane-based FCs are discussed and evaluated.

    © 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

    地址:北京市海淀区学院路29号 邮编:100083

    电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700