Inorganic Polymer Cement from Fe-Silicate Glasses: Varying the Activating Solution to Glass Ratio
详细信息    查看全文
  • 作者:Lieven Machiels (1)
    Lukas Arnout (1)
    Peter Tom Jones (1)
    Bart Blanpain (1)
    Yiannis Pontikes (1)
  • 关键词:Inorganic polymer ; Geopolymer ; Iron ; silicate glass ; Non ; ferrous slags ; Glass dissolution ; Sodium silicate ; Sodium hydroxide
  • 刊名:Waste and Biomass Valorization
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:5
  • 期:3
  • 页码:411-428
  • 全文大小:
  • 参考文献:1. Davidovits, J.: Geopolymer Chemistry & Applications, 3rd edn. Institut Géopolymère, Saint-Quentin (2011)
    2. van Deventer, J.S.J., Provis, J.L., Duxson, P., Brice, D.G.: Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials. Waste Biomass Valoriz 1(1), 145-55 (2010) CrossRef
    3. Lemougna, P.N., MacKenzie, K.J.D., Jameson, G.N.L., Rahier, H.: Chinje Melo U.F.: the role of iron in the formation of inorganic polymers (geopolymers) from volcanic ash: a 57Fe M?ssbauer spectroscopy study. J Mater Sci 48, 5280-286 (2013) CrossRef
    4. Pontikes, Y., Machiels, L., Onisei, S., Pandelaers, L., Geysen, D., Jones, P., Blanpain, B.: Slags with a high Al and Fe content as precursors for inorganic polymers. Appl. Clay Sci. 73, 93-02 (2013) CrossRef
    5. Onisei, S., Pontikes, Y., Van Gerven, T., Angelopoulos, G., Velea, T., Predica, V., Moldovan, P.: Synthesis of organic polymers using fly ash and primary lead slag. J. Hazard. Mater. 205-06, 101-10 (2012) CrossRef
    6. Komnitsas, K., Zaharaki, D., Perdikatsis, V.: Geopolymerisation of low calcium ferronickel slags. J. Mater. Sci. 42(9), 3073-082 (2007) CrossRef
    7. Komnitsas, K., Zaharaki, D., Perdikatsis, V.: Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. J. Hazard Mater. 161, 760-68 (2009) CrossRef
    8. Maragkos, I., Giannopoulou, I.P., Panias, D.: Synthesis of ferronickel slag-based geopolymers. Min. Eng. 22(2), 196-03 (2009) CrossRef
    9. Zaharaki, D., Komnitsas, K., Perdikatsis, V.: Use of analytical techniques for identification of inorganic polymer gel composition. J. Mater. Sci. 45, 2715-724 (2010) CrossRef
    10. Pontikes, Y., Onisei, S., Machiels, L., Jones, P. T., Blanpain, B.: On the use of secondary copper production fayalitic slag in applications of higher added-value Leuven, Centre for High Temperature Processes and Sustainable Materials Management, Department of Metallurgy and Materials Engineering, KU Leuven, internal report (2011)
    11. Bosmans, A., Vanderreydt, I., Geysen, D., Helsen, L.: The crucial role of Waste to-Energy technologies in enhanced landfill mining: a technology review. J. Clean. Prod. 55, 10-3 (2012) CrossRef
    12. Jones, P.T., Geysen, D., Tielemans, Y., Van Passel, S., Pontikes, Y., Blanpain, B., Quaghebeur, M., Hoekstra, N.: Enhanced landfill mining in view of multiple resource recovery: a critical review. J. Clean. Prod. 55, 45-5 (2012) CrossRef
    13. Davidovits, J.: Properties of Geopolymer Cements. In: Proceedings of the 1st International Conference on Alkaline Cements and Concretes, pp. 131-49 (1994)
    14. Provis, L.J., van Deventer, J.S.J.: Geopolymers: Structures, Processing, Properties and Industrial Applications, Woodhead Publishing Ltd (2009)
    15. Dimas, D., Giannopoulou, I., Panias, D.: Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. J. Mater. Sci. 44, 3719-730 (2009) CrossRef
    16. Giannopoulou, I., Panias, D.: Hydrolytic stability of sodium silicate gels in the presence of aluminium. J. Mater. Sci. 45, 5370-377 (2010) CrossRef
    17. Rietveld, H.M.: A method for including the line profiles of neutron powder diffraction peaks in the determination of crystal structures. Acta Crystallogr. 21, A228 (1966)
    18. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65-1 (1969) CrossRef
    19. Coelho, A. A.: TOPAS-Academic; A Computer Programme for Rietveld Analysis. http://www.topas-academic.net/. Accessed 31 Aug 2013
    20. Cheary, R.W., Coelho, A.A.: A fundamental parameters approach of X-ray line-profile fitting. J. Appl. Crystallogr. 25, 109-21 (1992) CrossRef
    21. European Committee for Standardization: EN 196-1, Methods of testing cement—Part 1: Determination of strength (1994)
    22. Elkem: Elkem Materials Mixture Analyzer software. http://www.elkem.com/en/silicon-materials/support/software-emma/. Last accessed 31 Aug 2013
    23. Barbosa, V.F.F., MacKenzie, K.J.D., Thaumaturgo, C.: Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int. J. Inorg. Mater. 2, 309-31 (2000) CrossRef
    24. Davidovits, J.: Chemistry of geopolymeric system, terminology. In Geopolymer-9 Proceedings, Saint-Quentin, France (1999)
    25. International Organization for standardization: ISO 10545-3. Ceramic tiles—Part 3: Determination of water absorption, apparent porosity, apparent relative density and bulk density (1994)
    26. Lee, W.K.W., van Deventer, J.S.J.: Structural reorganisation of class F fly ash in alkaline silicate solutions. Colloids Surf. A 211(1), 49-6 (2002) CrossRef
    27. Criado, M., Fernández-Jiménez, A., Palomo, A.: Alkali activation of fly ash: effect of the SiO2/Na2O ratio: Part I: FTIR study. Microporous Mesoporous Mater. 106(1-), 180-91 (2007) CrossRef
    28. Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir 23(15), 8170-179 (2007) CrossRef
    29. Sweet, J.R., White, W.B.: Study of sodium silicate glasses and liquids by infrared spectroscopy. Phys. Chem. Glasses 10, 246-51 (1969)
    30. Machiels, L., Arnout, L., Jones, P.T., Blanpain, B., Pontikes, Y.: Fe-Si-glasses as geopolymer precursors: decreasing the amount of activating solution? In: Proceedings of the 3th slag Valorisation Symposium. KU Leuven, Belgium, pp. 303-06 (2013)
    31. Kriven, W.M., Bell, J.L., Gordon, M.: Microstructure and microchemistry of of fully-reacted geopolymers and geopolymer matrix composites. Ceram. Trans. 153, 227-50 (2003)
    32. Moro, F., B?hni, H.: Ink-bottle effect in mercury intrusion porosimetry of cement-based materials. J. Colloid Interface Sci. 246(1), 135-49 (2001)
    33. Duxson, P., Mallicoat, S.W., Lukey, G.C., Kriven, W.M., van Deventer, J.S.J.: The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf A 292(1), 8-0 (2007) CrossRef
    34. Glukhovsky, V.D.: Soil silicates. Gosstroyizdat, Kiev, 154?p. (1959)
    35. ?ejka, J., Corma, A., Zones, S.: Zeolites and Catalysis: Synthesis, Reactions and Applications. vol. 2, 882 p. Wiley-VCH, Weinheim (2010)
    36. Rees, C.A.: Mechanisms and kinetics of gel formation in geopolymers. Phd thesis. University of Melbourne, 176p. (2007)
    37. Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A., van Deventer, J.S.J.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917-933 (2007) CrossRef
    38. Scherer, G.W.: Structure and properties of gels. Cem. Concr. Res. 29, 1149-157 (1999) CrossRef
    39. Keunzel, C., Vandeperre, L.J., Donatello, S., Boccaccini, A.R., Cheeseman, C.: Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers. J. Am. Ceram. Soc. 95(10), 3270-277 (2012) CrossRef
    40. Park, J., Han, Y., Kim, H.: Formation of mesoporous materials from silica dissolved in various NaOH concentrations: effect of pH and ionic strength. J. Nanomater. Article ID 528174, 10 pages (2012)
    41. Isabella, C., Lukey, G.C., Xu, Hua, van Deventer, J.: The effect of aggregate particle size on formation of geopolymeric gel. In: Proceedings of the Engineering Conferences International. Advanced Materials for Construction of Bridges, Buildings and Other Structures III, Art. 9. ECI digital archives (2005)
    42. Steinerova, M.: Mechanical properties of geopolymer mortars in relation to their porous structure. Ceram. Silikáty. 55(4), 362-72 (2011)
    43. Sindhunata, van Deventer, J.S.J., Lukey, G.C., Xu, H.: Effect of curing temperature and silicate concentration on fly-ash-based geopolymerisation. Ind. Chem. Res. (45), 3559-568 (2006)
  • 作者单位:Lieven Machiels (1)
    Lukas Arnout (1)
    Peter Tom Jones (1)
    Bart Blanpain (1)
    Yiannis Pontikes (1)

    1. High Temperature Processes and Industrial Ecology, Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001, Leuven, Belgium
  • ISSN:1877-265X
文摘
Large volumes of Fe-silicate glasses—slags—are produced as residues of metal production and waste treatment processes. It would be interesting if these materials could become an alternative group of precursors for the synthesis of inorganic polymer (IP) cements. This paper investigates the polymerisation of Fe-silicate glasses of composition (in wt%) SiO2: 40; FeO: 30; CaO: 15; Al2O3: 8 and an activating solution of composition (in wt%) Na2O: 15; SiO2: 13; H2O: 72. The mass ratio of the activating solution to the glass (L/S) was varied from 0.3 to 1.0 and the effect on the IP chemistry, microstructure and properties was investigated. Despite the high Fe and low Al contents of the glass, an IP cement could be synthesised, resistant to water dissolution and delivering mortars of compressive strength >52?MPa after 28?days curing at room temperature when using a L/S ratio of 0.45. Lowering the ratio from 1.00 to 0.45 results in a significant improvement in compressive strength, a lower porosity and when immersed in water, Na dissolution is decreased and water pH is lower. Microstructural investigation indicates that when the amount of activating solution is decreased, the degree of glass dissolution is lower resulting in less IP formation and a more homogeneous IP chemistry. Compared to higher L/S ratios, the IP mortar has a more densely packed microstructure of partially dissolved glass and sand aggregates bound by the IP matrix. At lower L/S ratios, the formation of micro scale shrinkage cracks in the IP matrix is strongly reduced, while at higher L/S ratios, shrinkage cracking is more pronounced and individual micro-cracks connect to form more pronounced large scale cracks. At a L/S ratio of 0.45, the IP cement is composed of 90 wt% Fe-silicate glass and only 10 wt% Na-silicate (% of powder mix) and it is indicated that this percentage can still be reduced. As 90 wt% of this IP cement is composed of an industrial residue and as curing is performed at ambient temperatures, its production is expected to have important ecological and economic benefits.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700