Estimation of evapotranspiration losses in the vadose zone using stable isotopes and chloride mass balance method
详细信息    查看全文
  • 作者:Sandow Mark Yidana ; Obed Fiifi Fynn ; Dickson Adomako…
  • 关键词:Chloride mass balance ; Evaporation ; Groundwater ; Isotopes ; Porewater ; Recharge ; Transpiration
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:75
  • 期:3
  • 全文大小:2,253 KB
  • 参考文献:Acheampong SY (1996) Geochemical evolution of the shallow groundwater system in the southern Voltaian Sedimentary Basin of Ghana. PhD Thesis, University of Nevada, Reno, USA
    Acheampong SY, Hess JW (1998) Hydrogeologic and hydrochemical framework of the shallow groundwater system in the southern Voltaian Sedimentary Basin, Ghana. Hydrogeol J 6:527–537CrossRef
    Acheampong SY, Hess JW (2000) Origin of the shallow groundwater system in the southern Voltaian Sedimentary Basin of Ghana: an isotopic approach. J Hydrol 233:37–53CrossRef
    Adomako D, Maloszewski P, Stumpp C, Osae S, Akiti TT (2010) Estimating groundwater recharge from water isotopes (δ2H, δ18O) depth profiles in the Densu River basin. Ghana. Hydrol Sci J 55(8):1405–1416CrossRef
    Aishlin PS (2006) Groundwater recharge estimation using chloride mass balance, dry creek experimental watershed. MSc Thesis, Boise State University, USA, p 124
    Akiti TT (1980) Etudé géochimique et isotopique de quelqués aquifers du Ghana. (Thesis.) Univeristé Paris-Sud. p 232
    Al-Gamal SA (2011) An assessment of recharge possibility to North-Western Sahara Aquifer System (NWSAS) using environmental isotopes. J Hydrol 398:184–190CrossRef
    Allison GB, Hughes MW (1978) The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer. Aust J Soil Res 16:181–195CrossRef
    Araguáus-Araguáus L, Rozanski K, Gonfiantini R, Louvat D (1995) Isotope effects accompanying vacuum extraction of soil water for stable isotope analyses. J Hydrol 168:159–171CrossRef
    Attandoh N, Yidana SM, Abdul-Samed A, Sakyi PA, Banoeng-Yakubo B, Nude P (2014) Conceptualization of the hydrogeological system of some sedimentary aquifers in Savelugu–Nanton and surrounding areas, Northern Ghana. Hydrol Process. doi:10.​1002/​hyp.​9308
    Bagamsah TT (2005) The impact of bushfire on carbon and nutrient stocks as well as albedo in the Savanna of Northern Ghana. PhD thesis, University of Bonn, Germany
    Barnes CJ, Allison GB (1984) The distribution of deuterium and 18O in dry soils: 3. Theory for non-isothermal water movement. J Hydrol 74:119–135CrossRef
    Braud I, Biron P, Bariac T, Richard P, Canale L, Gaudet JP, Vauclin M (2009) Isotopic composition of bare soil evaporated water vapor: part I. RUBIC IV experimental setup and results. J Hydrol 369(1–2):1–16. doi:10.​1016/​j.​jhydrol.​2009.​01.​034 CrossRef
    Brooks JR, Barnard HR, Coulombe R, McDonnell JJ (2010) Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nat Geosci 3(2):100–104. doi:10.​1038/​ngeo722 CrossRef
    Carrier MA, Lefebvre R, Racicot J, Asare EB (2008) Northern Ghana hydrogeological assessment project. 33rd WEDC International Conference, Accra, Ghana
    Cheng L, Liu W, Li Z, Chen J (2014) Study of soil water movement and groundwater recharge for the Loess Tableland using environmental tracers. Trans ASABE 57(1):23–30
    Coplen TB (1988) Normalization of oxygen and hydrogen isotope data. Chem Geol 72:293–297
    Craig H (1961) Isotopic variation in meteoric water. Science 133:1702–1703CrossRef
    Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed), Stable Isotopes in Oceanographic Studies and Paleotemperatures. Laboratorio di GeologiaNucleare, Pisa, Italy, pp 9–130
    Criss RE (1999) Isotope hydrology. In: Principles of stable isotope distribution. New York: Oxford University Press; p 89–136
    Dettinger MD (1989) Reconnaissance Estimates of Natural Recharge to Desert Basins in Nevada, USA. By using chloride-balance calculations. J Hydrol 106:55–78CrossRef
    Dickson KA, Benneh G (1995) A New Geography of Ghana. Revised Edition (2nd edn). Longman Group UK Ltd. 17–29
    Dogramaci S, Skrzypek G, Dodson W, Grierson PF (2012) Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of subtropical northwest Australia. J Hydrol 475:281–293CrossRef
    Dogramaci S, Firmani G, Hedley P, Skrzypek G, Grierson PF (2015) Evaluating recharge to an ephemeral dryland stream using a hydraulic model and water, chloride and isotope mass balance. Hydrol J 521:520–532CrossRef
    Erikson E, Khunakasem V (1969) Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in Israel Coastal Plain. J Hydrol 7:178–197CrossRef
    Flusche MA, Seltzer G, Rodbell D, Siegel D, Samson S (2005) Constraining water sources and hydrologic processes from the isotopic analysis of water and dissolved strontium, Lake Junin, Pru. J Hydrol 312:1–13CrossRef
    Gazis C, Feng XH (2004) A stable isotope study of soil water: evidence for mixing and preferential flow paths. Geoderma 119(1–2):97–111. doi:10.​1016/​S00167061(03)00243-X CrossRef
    Gee GW, Zhang ZF, Tyler SW, Albright WH, Singleton MJ (2004) Chloride-mass balance for predicting increased recharge after land-use change. University of California, University of California. http://​repositories.​cdlib.​org/​lbnl/​LBNL-55584
    Gibson JJ (2002) Short-term evaporation and water budget comparisons in shallow Arctic lakes using non-steady isotope mass balance. J Hydrol 264:242–261CrossRef
    Gibson JJ, Reid R (2010) Stable isotope fingerprint of open-water evaporation losses and effective drainage area fluctuations in a subarctic shield watershed. J Hydrol 381:142–150CrossRef
    Gill HE (1969) A ground-water reconnaissance of the Republic of Ghana, with a description of geohydrologic provinces. US Geological Survey Water-Supply paper 1757-K
    Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes J Ch (edtn.), Handbook of Environmental Isotopes Geochemistry. Elsevier, New York, 2:113–168
    Gupta BL, Gupta A (1999) Engineering hydrology. Standard publishers distributors, Delhi, p 380
    Hall DW, Risser DW (1993) Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster county. Pennsylvania, Water Resour Bull 29:55–76CrossRef
    Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J. 10:91–109
    Jassas H, Merkel B (2014) Estimating groundwater recharge in the semiarid Al-Khazir Gomal Basin, North Iraq. Water 6:2467-2481
    Johnson AI (1967) Specific yield – compilation of specific yields for various materials. US Geo. Surv. Water –Supply Paper 1662-D, pp 74
    Kesse GO (1985) The Mineral and Rocks Resources of Ghana. A.A. Balkema Publishers. Netherlands-Rotterdam 39–50
    Kim Y, Lee K-S, Koh D-C, Lee D-H, Lee S-G, Park W-B, Koh G-W, Woo N-C (2003) Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island. Korea, Journal of Hydrology 270:282–294CrossRef
    Kunstmann H, Jung G (2005) Impact of regional climate change on water availability in the Volta basin of West Africa. In: Regional Hydrological Impacts of Climatic Variability and Change. IAHS Publ. 295
    Leibundgut C, Maloszewski P, Külls C (2009) Tracers in Hydrology. New Jersey, USA, Wiley-BlackwellCrossRef
    Maduabuchi C, Faye S, Maloszewski P (2006) Isotope evidence of paleorecharge and paleoclimate in the deep confined aquifers of the Chad Basin, NE Nigeria. Sci Total Environ 370:467–479CrossRef
    Mahlknecht J, Gárfias-Solis J, Aravena R, Tesch R (2006) Geochemical and isotopic investigations on groundwater residence time and flow in the Independence Basin, Mexico. J Hydrol 324:283–300CrossRef
    Mukherjee A, Fryar AE, Rowe HD (2006) Regional-scale stable isotopic signatures of recharge and deep groundwater in the arsenic affected areas of West Bengal, India, Journal of Hydrology 334:151–161
    Négrel Ph, Lemiére B, Machard de Grammont H, Billaud P, Sengupta B (2007) Hydrogeochemical processes, mixing and isotope tracing in hard rock aquifers and surface waters from the Subarnarekha River Basin (east Singhbhum District, Jharkhand State, India). Hydrogeol J 15:1535–1552CrossRef
    Nkotagu H (1996) Application of environmental isotopes to groundwater recharge studies in a semi-arid fractured crystalline basement area of Domoda, Tanzania. J African Earth Sci 22(4):443–457
    Nyarko BK (2007) Floodplain wetland-river flow synergy in the White Volta River basin, Ghana. PhD Dissertation, University of Bonn, Germany, p 214
    Obeng HB (1967) Soil Survey and Classification in Ghana, The Ghana Farmer 11(2):62–69. Min. of Agric. Accra, Ghana
    Oboubie E (2008) Estimation of groundwater recharge in the context of future climate change in the White Volta River Basin, West Africa, PhD Dissertation, University of Bonn, Germany
    Ortega-Guerrero A (2003) Origin and geochemical evolution of groundwater in a closed-basin clayey aquitard, Northern Mexico, Journal of Hydrology 284:26–44
    Pelig-Ba KB (2009) Analysis of Stable Isotope Contents of Surface and Underground Water in Two Main Geological Formations in the Northern Region of Ghana. West African J Appl Ecol 15:1–9
    Peng TR, Liu KK, Wang CH, Chuang KS (2011) A water isotope approach to assessing moisture recycling in the island-based precipitation of Taiwan: a case study in the Western Pacific. Water Resour Res 47:W08507CrossRef
    Peng TR, Lu WC, Chen KY, Zhan WJ, Liu TK (2014) Groundwater-recharge connectivity between a hills-and-plains’ area of western Taiwan using water isotopes and electrical conductivity. J Hydrol 517:226–235CrossRef
    Ping J, Nichol C, Wei X (2014) Quantification of groundwater recharge using the chloride mass balance method in a semi-arid mountain terrain, South Interior British Columbia, Canada. Journal of Chemical and Pharmaceutical Research 6:383–388
    Saghravani SR, Yusoff I, Tahir WZWM, Othman Z (2015) Comparison of water table fluctuation and chloride mass balance methods for recharge estimation in a tropical rainforest climate: a case study from Kelantan River catchment. Environ Earth Sci, Malaysia. doi:10.​1007/​s12665-014-3727-2
    Salem ZE, Sakura Y, Aslam MAM (2004) The use of temperature, stable isotopes and water quality to determine the pattern and spatial extent of groundwater flow: nagaoka area, Japan. J Hydrol 12:563–575
    Sandwidi WJP (2007) Groundwater potential to supply population demand within the Kompienga dam basin in Burkina Faso. PhD Thesis. Ecology and Development Series, No. 54. Cuvillier Verlag Göttingen. p 160
    Scanlon BR, Healy RW, Cook PG, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39CrossRef
    Skoog DA, West DM, Holler FJ (1996) Fundamentals of Analytical Chemistry, 7th edn. Thomson Learning Inc, USA
    Skrzypek G, Mydlowski A, Dogramaci S, Hedley P, Gibson JJ, Grierson PF (2015) Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. Hydrol J 523:781–789CrossRef
    Song XF, Wang P, Yu JJ, Liu X, Liu JR, Yuan RQ (2011) Relationships between precipitation, soil water, and groundwater at Chongling catchment with the typical vegetation cover in the Taihang mountainous region, China. Environ Earth Sci 62(4):787–796. doi:10.​1007/​s12665-0100566-7 CrossRef
    US Geological Survey (2006) Collection of water samples (ver. 2.0): U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chap. A4, September , accessed September 5, 2011,http://​pubs.​water.​usgs.​gov/​twri9A4/​
    Ting C-S, Kerh T, Liao C-J (1998) Estimation of groundwater recharge using the chloride mass-balance method, Pingtung Plain, Taiwan. Hydrogeology 6:282–292CrossRef
    Tyner JS, Brown GO, Vogel JR, Garbrecht J (1999) Chloride mass balance to determine water fluxes beneath KCl fertilized crops. Trans Am Soc Agri Eng 43(6):1553–1559CrossRef
    Water Resources Commission, WRC (2008) White volta river basin—integrated water resources management plan, Accra, p 88
    Welhan JA, Fritz P (1977) Evaporation pan isotopic behavior as an index of isotopic evaporation conditions. Geochim. Cosmochim. Acta 41:682–686
    Wenninger J, Beza DT, Uhlenbrook S (2010) Experimental investigations of water fluxes within the soil-vegetation-atmosphere system: Stable isotope mass-balance approach to partition evaporation and transpiration. Phys Chem Earth A/B/C 35(13–14):565–570
    Wood W (1999) Use and misuse of the chloride mass balance method in estimating ground water recharge, Technical Commmentary. Ground Water 37:1CrossRef
    Yidana SM (2013) The stable isotope characteristics of groundwater in the Voltaian basin—an evaluation of the role of meteoric recharge in the basin. J Hydrogeol Hydrol Eng 2013(2):2. doi:10.​4172/​2325-9647.​1000106
    Yidana SM, Koffie E (2014) The groundwater recharge regime of some slightly metamorphosed Neoproterozoic sedimentary rocks: an application of natural environmental tracers. Process, Hydrol. doi:10.​1002/​hyp.​9859
    Yidana SM, Ophori D, Banoeng-Yakubo BK (2008) Hydrochemical Evaluation of the Volta Basin: the Afram Plains area. J Environ Manage 88:697–707CrossRef
    Zimmermann U, Munnich KO, Roether W, Kreutz W, Schubach K, Siegel O (1966) Tracers determine movement of soil moisture and evapotranspiration. Science 152(3720):346–347. doi:10.​1126/​science.​152.​3720.​346
    Zimmermann U, Münnich KO, Roether W (1967) Downward movement of soil moisture traced by means of hydrogen isotopes. Isotope techniques in the hydrologic cycle. Am Geophys Union Geophys Monogr Ser 11:28–36
  • 作者单位:Sandow Mark Yidana (1)
    Obed Fiifi Fynn (1)
    Dickson Adomako (2)
    Larry Pax Chegbeleh (1)
    Prosper M. Nude (1)

    1. Department of Earth Science, University of Ghana, Legon, Accra, Ghana
    2. Ghana Atomic Energy Commission, Kwabenya, Accra, Ghana
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
This study used stable isotope and chloride data of porewater to evaluate water fluxes through the vadose zone and thereby estimate evapotranspiration water losses in parts of the Nabogo catchment of the White Volta Basin in Ghana. The overall objective was to develop a framework so that the recharge regime can be properly conceptualized for numerical hydrological modeling. Unsaturated zone material was sampled at regular intervals of 50 cm to a maximum depth of 300 cm in four different locations in the study area. Rainwater, groundwater and surface water were simultaneously sampled and analyzed for their δ 18O and δ 2H characteristics. Porewater, extracted from the unsaturated zone material was analyzed for the δ 18O and δ 2H and chloride content and profiles were created to gauge the isotopic evolution of precipitation and estimate evaporative losses at each interval of the sampling. The chloride mass balance technique was used to estimate the fraction of infiltrating water remaining at each interval of the sampling. Transpiration losses through the entire profile were then estimated. This study finds that the vertical infiltration of water through the vadose zone is dominated by piston flow and a mixture of piston and preferential flows. In the shallow subsurface (0.0–3.0 m), evaporative losses estimated from stable isotope data fall in the range of 29.3–52.4 % (322.3–576.4 mm/year) of the annual precipitation, with an average of 40 % (or 440 mm/year). Estimated vadose zone recharge at the maximum depth of sampling ranges between 11.1 and 185 mm/year with an average of 32.9 mm/year, representing 1.1, 18.5, and 3.29 % of the annual precipitation, respectively. Estimated transpiration losses within this interval range between 29.1 % (290 mm/year) and 69.5 % (695 mm/year), with an average of 54.7 % (547 mm/year) of the annual precipitation. Transpiration losses appear to increase down the profile and apparently account for a significant percentage of water losses in the vadose zone. A significant proportion of the original precipitation is lost within the upper 300 cm (3 m) of the vadose zone. The Water Table Fluctuations method was independently used to estimate saturated zone groundwater recharge and indicates that recharge rates range between 64.65 and 151.2 mm/year with an average of 102.5 mm/year which, respectively represent 5.9, 13.7, and 9.3 % of the average annual precipitation in the area. The apparently higher estimates from the water table fluctuations method may arise from uncertainties in the specific yield values used for the vadose zone material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700