Practical Considerations for Selection of Representative Elementary Volumes for Fluid Permeability in Fibrous Porous Media
详细信息    查看全文
  • 作者:A. G. Hendrick (1) agh@email.arizona.edu
    R. G. Erdmann (12) erdmann@arizona.edu
    M. R. Goodman (1) mgoodman@email.arizona.edu
  • 关键词:Stokes flow &#8211 ; Tensor permeability &#8211 ; Representative elementary volume &#8211 ; REV &#8211 ; Porous media
  • 刊名:Transport in Porous Media
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:95
  • 期:2
  • 页码:389-405
  • 全文大小:749.4 KB
  • 参考文献:1. Apelian D., Flemings M., Mehrabian R.: Specific permeability of partially solidified dendritic networks of Al–Si alloys. Met. Mater. Trans. B. 5(12), 2533–2537 (1974)
    2. Bachmat Y., Bear J.: Macroscopic modelling of transport phenomena in porous media. 1: The continuum approach. Trans. Porous Med 1(3), 213–240 (1986). doi:
    3. Barrere J., Gipouloux O., Whitaker S.: On the closure problem for Darcy’s law. Trans. Porous Med 7, 209–222 (1992). doi:
    4. Bear J.: Dynamics of Fluids in Porous Media. Dover Publications, New York (1988)
    5. Bear J., Bachmat Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic, Boston (1990)
    6. Erdmann, R.: Image-based numerical simulation of stokes flow in porous media. PhD thesis, The University of Arizona, Arizona (2006)
    7. Feder J.: Random sequential adsorption. J. Theor. Biol. 87(2), 237–54 (1980)
    8. Fuloria D., Lee P., Bernard D.: Microtomographic characterization of columnar Al–Cu dendrites for fluid flow and flow stress determination. Mater. Sci. Eng. A. 494(1–2), 3–9 (2008)
    9. Sciences ICfM.: Advanced Methods for Groundwater Pollution Control. Springer, New York (1995)
    10. Goodman, M.: Properties of stochastic flow and permeability of random porous media. Master’s thesis, The University of Arizona, Arizona (2010)
    11. Greenkorn R.: Flow Phenomena in Porous Media: Fundamentals and Applications in Petroleum, Water, and Food Production. Marcel Dekker, New York (1983)
    12. Heroux M.A., Bartlett R.A., Howle V.E., Hoekstra R.J., Hu J.J., Kolda T.G., Lehoucq R.B., Long K.R., Pawlowski R.P., Phipps E.T., Salinger A.G., Thornquist H.K., Tuminaro R.S., Willenbring J.M., Williams A., Stanley K.S.: An overview of the trilinos project. ACM Trans. Math. Softw. 31(3):397–423 (2005) http://doi.acm.org/10.1145/1089014.1089021
    13. Herzig J., Leclerc D., Goff P.: Flow of suspensions through porous media: application to deep filtration. Ind. Eng. Chem. 62(5), 8–35 (1970)
    14. Hilfer, R.: Local porosity theory and stochastic reconstruction for porous media. In: Mecke K., Stoyan D. (eds.) Statistical Physics and Spatial Statistics. Lecture Notes in Physics, vol. 554, pp. 203–241, Berlin (2000)
    15. Poirier D.: Permeability for flow of interdendritic liquid in columnar-dendritic alloys. Metall. Mater. Trans. B 18(1), 245–255 (1987). doi:10.1007/BF02658450
    16. Poirier D.R., Heinrich J.C.: Continuum model for predicting macrosegregation in dendritic alloys. Mater. Charact. 32(4), 287–298 (1994). doi:
    17. Scott D.: Multivariate Density Estimation, vol. 139. Wiley, New York (1992)
    18. Sobczyk K., Kirkner D.: Stochastic Modeling of Microstructures. Birkhauser, Boston (2001)
    19. Sung P.K., Poirier D.R., Felicelli S.D.: Sensitivity of mesh spacing on simulating macrosegregation during directional solidification of a superalloy. Int. J. Numer. Meth. Fl. 35(3), 3577370 (2001)
    20. Tartar, L.: Appendix in non-homogenious media and vibration theory. Lecture Notes in Physics, Springer, Berlin (2000)
    21. Whitaker S.: Advances in theory of fluid motion in porous media. Ind. Eng. Chem. 61(12), 14–28 (1969)
    22. Whitaker S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Trans. Porous Med 1(1), 3–25 (1986)
    23. Wu M., Ludwig A.: A three-phase model for mixed columnar-equiaxed solidification. Metall. Mater. Trans. A. 37, 1613–1631 (2006). doi:
  • 作者单位:1. Department of Materials Science and Engineering, The University of Arizona, 1235 E James E Rogers Way, Tucson, AZ 85721, USA2. Program in Applied Mathematics, The University of Arizona, Tucson, AZ, USA
  • ISSN:1573-1634
文摘
We investigate the lower bound of the area of a square-shaped representative elementary volume (REV) for the permeability tensor for transverse Stokes flow through randomly packed, parallel, and monodisperse cylinders. The investigation is significant to flow models using small calculation regions for fibrous porous media, such as modeling defect formation during directional solidification in the mushy zone of dendritic alloys. Using 90 ensembles of 1,000 domains, where each ensemble comprises domains with the same number and size of cylinders, we develop correlations between the permeability tensor invariants and macroscopic features of the domain. We find that for ensembles of domains with fewer than 200 cylinders, the eigenvectors of the permeability tensors exhibit preferential alignment with the domain axes, demonstrating that the estimated permeability is significantly affected by the periodic boundary conditions for these cases. Our results also suggest that the anisotropy of the permeability tensor may not be insignificant even for large sampling volumes. These results provide a practical lower bound for the calculation volumes used in permeability simulations in fibrous porous media, and also suggest that modelers should consider using an anisotropic tensor for small calculation volumes if phenomena such as channeling are important.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700