Ischemic postconditioning confers cardioprotection and prevents reduction of Trx-1 in young mice, but not in middle-aged and old mice
详细信息    查看全文
  • 作者:Virginia Perez ; Verónica D´Annunzio ; Tamara Mazo…
  • 关键词:Ischemic postconditioning ; Myocardial infarction ; Aging ; Thioredoxin ; 1
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:415
  • 期:1-2
  • 页码:67-76
  • 全文大小:2,029 KB
  • 参考文献:1.Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 285(2):H579–H588. doi:10.​1152/​ajpheart.​01064.​2002 CrossRef PubMed
    2.Buchholz B, Donato M, D’Annunzio V, Gelpi RJ (2014) Ischemic postconditioning: mechanisms, comorbidities, and clinical application. Mol Cell Biochem 392(1–2):1–12. doi:10.​1007/​s11010-014-2014-6 CrossRef PubMed
    3.Donato M, D’Annunzio V, Buchholz B, Miksztowicz V, Carrión CL, Valdez LB, Zaobornyj T, Schreier L, Wikinski R, Boveris A, Berg G, Gelpi RJ (2010) Role of matrix metalloproteinase-2 in the cardioprotective effect of ischaemic postconditioning. Exp Physiol 95(2):274–281. doi:10.​1113/​expphysiol.​2009.​049874 CrossRef PubMed
    4.Heusch G (2015) Treatment of myocardial ischemia/reperfusion injury by ischemic and pharmacological postconditioning. Compr Physiol 5(3):1123–1145. doi:10.​1002/​cphy.​c140075 CrossRef PubMed
    5.Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, Kerendi F, Guyton RA, Vinten-Johansen J (2004) Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res 62(1):74–85. doi:10.​1016/​j.​cardiores.​2004.​01.​006 CrossRef PubMed
    6.Liu X, Chen H, Zhan B, Xing B, Zhou J, Zhu H, Chen Z (2007) Attenuation of reperfusion injury by renal ischemic postconditioning: the role of NO. Biochem Biophys Res Commun. 359(3):628–634. doi:10.​1016/​j.​bbrc.​2007.​05.​129 CrossRef PubMed
    7.Cai M, Li Y, Xu Y, Swartz HM, Chen CL, Chen YR, He G (2011) Endothelial NOS activity and myocardial oxygen metabolism define the salvageable ischemic time window for ischemic postconditioning. Am J Physiol Heart Circ Physiol 300(3):H1069–H1077. doi:10.​1152/​ajpheart.​00694.​2010 CrossRef PubMed PubMedCentral
    8.Schwartz LM, Lagranha CJ (2006) Ischemic postconditioning during reperfusion activates Akt and ERK without protecting against lethal myocardial ischemia-reperfusion injury in pigs. Am J Physiol Heart Circ Physiol 290(3):H1011–H1018. doi:10.​1152/​ajpheart.​00864.​200 CrossRef PubMed
    9.Iliodromitis EK, Georgiadis M, Cohen MV, Downey JM, Bofilis E, Kremastinos DT (2006) Protection from post-conditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol 101(6):502–507. doi:10.​1007/​s00395-006-0606-3 CrossRef PubMed
    10.Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116(4):674–699. doi:10.​1161/​CIRCRESAHA.​116.​305348 CrossRef PubMed
    11.Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95(3):230–232. doi:10.​1161/​01.​RES.​0000138303.​76488.​fe CrossRef PubMed
    12.Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15(2):69–75. doi:10.​1016/​j.​tcm.​2005.​03.​001 CrossRef PubMed
    13.Buchholz B, Annunzio D, Giani JF, Siachoque N, Dominici FP, Turyn D, Perez V, Donato M, Gelpi RJ (2014) Ischemic postconditioning reduces infarct size through the α1-adrenergic receptor pathway. J Cardiovasc Pharmacol 63(6):504–511. doi:10.​1097/​FJC.​0000000000000074​ CrossRef PubMed
    14.Aota M, Matsuda K, Isowa N, Wada H, Yodoi J, Ban T (1996) Protection against reperfusion-induced arrhythmias by human thioredoxin. J Cardiovasc Pharmacol 27(5):727–732CrossRef PubMed
    15.Zitta K, Meybohm P, Gruenewald M, Cremer J, Zacharowski KD, Scholz J, Steinfath M, Albrecht M (2015) Profiling of cell stress protein expression in cardiac tissue of cardiosurgical patients undergoing remote ischemic preconditioning: implications for thioredoxin in cardioprotection. J Transl Med. 13:34. doi:10.​1186/​s12967-015-0403-6 CrossRef PubMed PubMedCentral
    16.Tao L, Tao E, Bryan NS, Qu Y, Liu HR, Hu A, Christopher TA, Lopez BL, Yodoi J, Koch WJ, Feelisch M, Ma XL (2004) Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation. Proc Natl Acad Sci USA 101(31):11471–11476. doi:10.​1073/​pnas.​0402941101 CrossRef PubMed PubMedCentral
    17.Du J, Wang Q, Li QM, Zhang BM, Xie KL, Wang GL (2012) Alternation of thioredoxin system in postconditioning with hydrogen sulfide against hepatic ischemia-reperfusion injury in rats. Zhonghua Yi Xue Za Zhi 92(37):2607–2610PubMed
    18.Przyklenk K (2011) Efficacy of cardioprotective ‘conditioning’ strategies in aging and diabetic cohorts: the co-morbidity conundrum. Drugs Aging 28(5):331–343. doi:10.​2165/​11587190-000000000-00000 CrossRef PubMed
    19.Whittington HJ, Harding I, Stephenson CI, Bell R, Hausenloy DJ, Mocanu MM, Yellon DM (2013) Cardioprotection in the aging, diabetic heart: the loss of protective Akt signalling. Cardiovasc Res 99(4):694–704. doi:10.​1093/​cvr/​cvt140 CrossRef PubMed PubMedCentral
    20.Miller RA, Harrison DE, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Strong R (2007) An aging interventions testing program: study design and interim report. Aging Cell 6(4):565–575. doi:10.​1111/​j.​1474-9726.​2007.​00311.​x CrossRef PubMed
    21.Willems L, Zatta A, Holgren K, Ashton KJ, Headrick JP (2005) Age-related changes in ischemic tolerance in male and female mouse hearts. J Mol Cell Cardiol 38(2):245–256. doi:10.​1016/​j.​yjmcc.​2004.​09.​014 CrossRef PubMed
    22.Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi E (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266. doi:10.​1006/​abbi.​2001.​2292 CrossRef PubMed
    23.Rodriguez-Ariza A, Toribio F, López-Barea J (1994) Rapid determination of glutathione status in fish liver using high-performance liquid chromatography and electrochemical detection. J Chromatogr B Biomed Appl 656:311–318CrossRef PubMed
    24.Braunersreuther V, Montecucco F, Asrih M, Pelli G, Galan K, Frias M, Burger F, Quinderé AL, Montessuit C, Krause KH, Mach F, Jaquet V (2013) Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J Mol Cell Cardiol 64:99–107. doi:10.​1016/​j.​yjmcc.​2013.​09.​007 CrossRef PubMed
    25.Inserte J, Hernando V, Vilardosa Ú, Abad E, Poncelas-Nozal M, Garcia-Dorado D (2013) Activation of cGMP/protein kinase G pathway in postconditioned myocardium depends on reduced oxidative stress and preserved endothelial nitric oxide synthase coupling. J Am Heart Assoc 2(1):e005975. doi:10.​1161/​JAHA.​112.​005975 CrossRef PubMed PubMedCentral
    26.Hausenloy DJ, Mocanu MM, Yellon DM (2004) Cross-talk between the survival kinases during early reperfusion: its contribution to ischemic preconditioning. Cardiovasc Res 63(2):305–312. doi:10.​1016/​j.​cardiores.​2004.​04.​011 CrossRef PubMed
    27.Turoczi T, Chang VW, Engelman RM, Maulik N, Ho YS, Das DK (2003) Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx-1. J Mol Cell Cardiol 35(6):695–704. doi:10.​1016/​S0022-2828(03)00117-2 CrossRef PubMed
    28.Adluri RS, Thirunavukkarasu M, Zhan L, Akita Y, Samuel SM, Otani H, Ho YS, Maulik G, Maulik N (2011) Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: a study using thioredoxin 1 transgenic mice. J Mol Cell Cardiol 50(1):239–247. doi:10.​1016/​j.​yjmcc.​2010.​11.​002 CrossRef PubMed PubMedCentral
    29.Nishino Y, Webb IG, Davidson SM, Ahmed AI, Clark JE, Jacquet S, Shah AM, Miura T, Yellon DM, Avkiran M, Marber MS (2008) Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse. Circ Res 103(3):307–314. doi:10.​1161/​CIRCRESAHA.​107.​169953 CrossRef PubMed
    30.Zaman J, Jeddi S, Daneshpour MS, Zarkesh M, Daneshian Z, Ghasemi A (2015) Ischemic postconditioning provides cardioprotective and antiapoptotic effects against ischemia-reperfusion injury through iNOS inhibition in hyperthyroid rats. Gene 570(2):185–190. doi:10.​1016/​j.​gene.​2015.​06.​011 CrossRef PubMed
    31.Tong G, Aponte AM, Kohr MJ, Steenbergen C, Murphy E, Sun J (2014) Postconditioning leads to an increase in protein S-nitrosylation. Am J Physiol Heart Circ Physiol 306(6):H825–H832. doi:10.​1152/​ajpheart.​00660.​2013 CrossRef PubMed PubMedCentral
    32.Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66(4):1142–1174. doi:10.​1124/​pr.​113.​008300 CrossRef PubMed
    33.Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83(2):247–261. doi:10.​1093/​cvr/​cvp033 CrossRef PubMed
    34.Abete P, Cioppa A, Calabrese C, Pascucci I, Cacciatore F, Napoli C, Carnovale V, Ferrara N, Rengo F (1999) Ischemic threshold and myocardial stunning in the aging heart. Exp Gerontol 34(7):875–884. doi:10.​1016/​S0531-5565(99)00060-1 CrossRef PubMed
    35.Boengler K, Konietzka I, Buechert A, Heinen Y, Garcia-Dorado D, Heusch G, Schulz R (2007) Loss of ischemic preconditioning’s cardioprotection in aged mouse hearts is associated with reduced gap junctional and mitochondrial levels of connexin 43. Am J Physiol Heart Circ Physiol 292(4):H1764–H1769. doi:10.​1152/​ajpheart.​01071.​2006 CrossRef PubMed
    36.Zhang H, Tao L, Jiao X, Gao E, Lopez BL, Christopher TA, Koch W, Ma XL (2007) Nitrative thioredoxin inactivation as a cause of enhanced myocardial ischemia/reperfusion injury in the aging heart. Free Radic Biol Med 43:39–47. doi:10.​1016/​j.​freeradbiomed.​2007.​03.​016 CrossRef PubMed PubMedCentral
    37.Azhar G, Gao W, Liu L, Wei JY (1999) Ischemia-reperfusion in the adult mouse heart influence of age. Exp Gerontol 34:699–714. doi:10.​1016/​S0531-5565(99)00031-5 CrossRef PubMed
    38.Ashrafian H, Czibik G, Bellahcene M et al (2012) Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab 15:361–367. doi:10.​1016/​j.​cmet.​2012.​01.​017 CrossRef PubMed PubMedCentral
    39.Cohen MV, Yang XM, Neumann T, Heusch G, Downey JM (2000) Favorable remodeling enhances recovery of regional myocardial function in the weeks after infarction in ischemically preconditioned hearts. Circulation 102:579–583. doi:10.​1161/​01.​CIR.​102.​5.​579 CrossRef PubMed
    40.Deng C, Sun Z, Tong G, Yi W, Ma L, Zhao B, Cheng L, Zhang J, Cao F, Yi D (2013) α-Lipoic acid reduces infarct size and preserves cardiac function in rat myocardial ischemia/reperfusion injury through activation of PI3 K/Akt/Nrf2 pathway. PLoS One 8(3):e58371. doi:10.​1371/​journal.​pone.​0058371 CrossRef PubMed PubMedCentral
    41.Penna C, Perrelli MG, Tullio F, Angotti C, Camporeale A, Poli V, Pagliaro P (2013) Diazoxide postconditioning induces mitochondrial protein S-nitrosylation and a redox-sensitive mitochondrial phosphorylation/translocation of RISK elements: no role for SAFE. Basic Res Cardiol 108(5):371. doi:10.​1007/​s00395-013-0371-z CrossRef PubMed
    42.Ravingerová T, Carnická S, Ledvényiová V, Barlaka E, Galatou E, Chytilová A, Mandíková P, Nemčeková M, Adameová A, Kolář F, Lazou A (2013) Upregulation of genes involved in cardiac metabolism enhances myocardial resistance to ischemia/reperfusion in the rat heart. Physiol Res 62(Suppl 1):S151–S163PubMed
    43.Wang Y, Li X, Wang X, Lau W, Wang Y, Xing Y, Zhang X, Ma X, Gao F (2013) Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β signaling and inhibition of the mitochondria-dependent apoptotic pathway. PLoS One 8(8):e70956. doi:10.​1371/​journal.​pone.​0070956 CrossRef PubMed PubMedCentral
  • 作者单位:Virginia Perez (1)
    Verónica D´Annunzio (1)
    Tamara Mazo (1)
    Timoteo Marchini (2)
    Lourdes Caceres (2)
    Pablo Evelson (2)
    Ricardo J. Gelpi (1)

    1. Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, JE Uriburu 950 – 2nd floor, 1114, Buenos Aires, Argentina
    2. Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Medical Biochemistry
    Oncology
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-4919
文摘
Thioredoxin-1 (Trx-1) is part of an antioxidant system that maintains the cell redox homeostasis but their role on ischemic postconditioning (PostC) is unknown. The aim of this work was to determine whether Trx-1 participates in the cardioprotective mechanism of PostC in young, middle-aged, and old mice. Male FVB young (Y: 3 month-old), middle-aged (MA: 12 month-old), and old (O: 20 month-old) mice were used. Langendorff-perfused hearts were subjected to 30 min of ischemia and 120 min of reperfusion (I/R group). After ischemia, we performed 6 cycles of R/I (10 s each) followed by 120 min of reperfusion (PostC group). We measured the infarct size (triphenyltetrazolium); Trx-1, total and phosphorylated Akt, and GSK3β expression (Western blot); and the GSH/GSSG ratio (HPLC). PostC reduced the infarct size in young mice (I/R-Y: 52.3 ± 2.4 vs. PostC-Y: 40.0 ± 1.9, p < 0.05), but this protection was abolished in the middle-aged and old mice groups. Trx-1 expression decreased after I/R, and the PostC prevented the protein degradation in young animals (I/R-Y: 1.05 ± 0.1 vs. PostC-Y: 0.52 ± .0.07, p < 0.05). These changes were accompanied by an improvement in the GSH/GSSG ratio (I/R-Y: 1.25 ± 0.30 vs. PostC-Y: 7.10 ± 2.10, p < 0.05). However, no changes were observed in the middle-aged and old groups. Cytosolic Akt and GSK3β phosphorylation increased in the PostC compared with the I/R group only in young animals. Our results suggest that PostC prevents Trx-1 degradation, decreasing oxidative stress and allowing the activation of Akt and GSK3β to exert its cardioprotective effect. This protection mechanism is not activated in middle-aged and old animals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700