Cardioprotective function of mitochondrial-targeted and transcriptionally inactive STAT3 against ischemia and reperfusion injury
详细信息    查看全文
  • 作者:Karol Szczepanek ; Aijun Xu ; Ying Hu ; Jeremy Thompson…
  • 关键词:Myocardial infarction ; Reactive oxygen species ; Necrosis ; Apoptosis ; Mitochondrial permeability transition
  • 刊名:Basic Research in Cardiology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:110
  • 期:6
  • 全文大小:653 KB
  • 参考文献:1.Aldakkak M, Stowe DF, Chen Q, Lesnefsky EJ, Camara AK (2008) Inhibited mitochondrial respiration by amobarbital during cardiac ischaemia improves redox state and reduces matrix Ca2+ overload and ROS release. Cardiovasc Res 77:406鈥?15. doi:10.鈥?016/鈥媕.鈥媍ardiores.鈥?007.鈥?8.鈥?08 PubMed
    2.Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R (2008) Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ Res 102:131鈥?35. doi:10.鈥?161/鈥婥IRCRESAHA.鈥?07.鈥?64699 CrossRef PubMed
    3.Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Ther 120:172鈥?85. doi:10.鈥?016/鈥媕.鈥媝harmthera.鈥?008.鈥?8.鈥?02 CrossRef PubMed
    4.Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771鈥?85. doi:10.鈥?007/鈥媠00395-010-0124-1 PubMed Central CrossRef PubMed
    5.Boengler K, Ungefug E, Heusch G, Schulz R (2013) The STAT3 inhibitor stattic impairs cardiomyocyte mitochondrial function through increased reactive oxygen species formation. Curr Pharm Des 19:6890鈥?895. doi:10.鈥?174/鈥?381612819391311鈥?7115940 CrossRef PubMed
    6.Borutaite V, Brown GC (2003) Mitochondria in apoptosis of ischemic heart. FEBS Lett 541:1鈥?. doi:10.鈥?016/鈥婼0014-5793(03)00278-3 CrossRef PubMed
    7.Borutaite V, Budriunaite A, Morkuniene R, Brown GC (2001) Release of mitochondrial cytochrome c and activation of cytosolic caspases induced by myocardial ischaemia. Biochim Biophys Acta 1537:101鈥?09. doi:10.鈥?016/鈥婼0925-4439(01)00062-X CrossRef PubMed
    8.Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ (2006) Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmacol Exp Ther 319:1405鈥?412. doi:10.鈥?124/鈥媕pet.鈥?06.鈥?10262 CrossRef PubMed
    9.Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ (2008) Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol 294:C460鈥揅466. doi:10.鈥?152/鈥媋jpcell.鈥?0211.鈥?007 CrossRef PubMed
    10.Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278:36027鈥?6031. doi:10.鈥?074/鈥媕bc.鈥婱304854200 CrossRef PubMed
    11.Cohen MV, Yang XM, Downey JM (2007) The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 115:1895鈥?903. doi:10.鈥?161/鈥婥IRCULATIONAHA.鈥?06.鈥?75710 CrossRef PubMed
    12.Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233鈥?49. doi:10.鈥?016/鈥婼0022-2828(03)00043-9 PubMed Central CrossRef PubMed
    13.Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630鈥?635. doi:10.鈥?126/鈥媠cience.鈥?77.鈥?332.鈥?630 CrossRef PubMed
    14.Doetschman T (2009) Influence of genetic background on genetically engineered mouse phenotypes. Methods Mol Biol 530:423鈥?33. doi:10.鈥?007/鈥?78-1-59745-471-1_鈥?3 PubMed Central CrossRef PubMed
    15.Fuglesteg BN, Suleman N, Tiron C, Kanhema T, Lacerda L, Andreasen TV, Sack MN, Jonassen AK, Mjos OD, Opie LH, Lecour S (2008) Signal transducer and activator of transcription 3 is involved in the cardioprotective signalling pathway activated by insulin therapy at reperfusion. Basic Res Cardiol 103:444鈥?53. doi:10.鈥?007/鈥媠00395-008-0728-x PubMed Central CrossRef PubMed
    16.Guo Y, Flaherty MP, Wu WJ, Tan W, Zhu X, Li Q, Bolli R (2012) Genetic background, gender, age, body temperature, and arterial blood pH have a major impact on myocardial infarct size in the mouse and need to be carefully measured and/or taken into account: results of a comprehensive analysis of determinants of infarct size in 1074 mice. Basic Res Cardiol 107:288. doi:10.鈥?007/鈥媠00395-012-0288-y PubMed Central CrossRef PubMed
    17.Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion鈥攁 target for cardioprotection. Cardiovasc Res 61:372鈥?85. doi:10.鈥?016/鈥婼0008-6363(03)00533-9 CrossRef PubMed
    18.Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174:167鈥?72. doi:10.鈥?023/鈥婣:鈥?006879618176 CrossRef PubMed
    19.Hausenloy DJ, Ong SB, Yellon DM (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 104:189鈥?02. doi:10.鈥?007/鈥媠00395-009-0010-x CrossRef PubMed
    20.Hedayati N, Schomisch SJ, Carino JL, Timothy Sherwood J, Lesnefsky EJ, Cmolik BL (2003) Cardioprotection by St Thomas鈥?solution is mediated by protein kinase C and tyrosine kinase. J Surg Res 113:121鈥?27. doi:10.鈥?016/鈥婼0022-4804(03)00146-X CrossRef PubMed
    21.Heusch G, Musiolik J, Gedik N, Skyschally A (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302鈥?308. doi:10.鈥?161/鈥婥IRCRESAHA.鈥?11.鈥?55604 CrossRef PubMed
    22.Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C, Luchtefeld M, Poli V, Schneider MD, Balligand JL, Desjardins F, Ansari A, Struman I, Nguyen NQ, Zschemisch NH, Klein G, Heusch G, Schulz R, Hilfiker A, Drexler H (2007) A cathepsin D-cleaved 16聽kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128:589鈥?00. doi:10.鈥?016/鈥媕.鈥媍ell.鈥?006.鈥?2.鈥?36 CrossRef PubMed
    23.Lecour S, Suleman N, Deuchar GA, Somers S, Lacerda L, Huisamen B, Opie LH (2005) Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 112:3911鈥?918. doi:10.鈥?161/鈥婥IRCULATIONAHA.鈥?05.鈥?81058 CrossRef PubMed
    24.Lee Y, Lee HY, Gustafsson AB (2012) Regulation of autophagy by metabolic and stress signaling pathways in the heart. J Cardiovasc Pharmacol 60:118鈥?24. doi:10.鈥?097/鈥婩JC.鈥?b013e318256cdd0鈥?/span> PubMed Central CrossRef PubMed
    25.Lesnefsky EJ, Tandler B, Ye J, Slabe TJ, Turkaly J, Hoppel CL (1997) Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. Am J Physiol 273:H1544鈥揌1554PubMed
    26.Levy DE, Lee CK (2002) What does Stat3 do? J Clin Invest 109:1143鈥?148. doi:10.鈥?172/鈥婮CI15650 PubMed Central CrossRef PubMed
    27.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265鈥?75PubMed
    28.Marques SM, Campos PP, Castro PR, Cardoso CC, Ferreira MA, Andrade SP (2011) Genetic background determines mouse strain differences in inflammatory angiogenesis. Microvasc Res 82:246鈥?52. doi:10.鈥?016/鈥媕.鈥媘vr.鈥?011.鈥?8.鈥?11 CrossRef PubMed
    29.Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914鈥?22. doi:10.鈥?161/鈥?1.鈥婻ES.鈥?000261924.鈥?6669.鈥?6 CrossRef PubMed
    30.Nadtochiy SM, Burwell LS, Ingraham CA, Spencer CM, Friedman AE, Pinkert CA, Brookes PS (2009) In vivo cardioprotection by S-nitroso-2-mercaptopropionyl glycine. J Mol Cell Cardiol 46:960鈥?68. doi:10.鈥?016/鈥媕.鈥媦jmcc.鈥?009.鈥?1.鈥?12 PubMed Central CrossRef PubMed
    31.Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795鈥?03. doi:10.鈥?083/鈥媕cb.鈥?00809125 PubMed Central CrossRef PubMed
    32.Natarajan SK, Becker DF (2012) Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress. Cell Health Cytoskelet 2012:11鈥?7. doi:10.鈥?147/鈥婥HC.鈥婼4955 PubMed Central PubMed
    33.Negoro S, Kunisada K, Fujio Y, Funamoto M, Darville MI, Eizirik DL, Osugi T, Izumi M, Oshima Y, Nakaoka Y, Hirota H, Kishimoto T, Yamauchi-Takihara K (2001) Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation 104:979鈥?81. doi:10.鈥?161/鈥媓c3401.鈥?95947 CrossRef PubMed
    34.Oshima Y, Fujio Y, Nakanishi T, Itoh N, Yamamoto Y, Negoro S, Tanaka K, Kishimoto T, Kawase I, Azuma J (2005) STAT3 mediates cardioprotection against ischemia/reperfusion injury through metallothionein induction in the heart. Cardiovasc Res 65:428鈥?35. doi:10.鈥?016/鈥媕.鈥媍ardiores.鈥?004.鈥?0.鈥?21 CrossRef PubMed
    35.Paillard M, Gomez L, Augeul L, Loufouat J, Lesnefsky EJ, Ovize M (2009) Postconditioning inhibits mPTP opening independent of oxidative phosphorylation and membrane potential. J Mol Cell Cardiol 46:902鈥?09. doi:10.鈥?016/鈥媕.鈥媦jmcc.鈥?009.鈥?2.鈥?17 CrossRef PubMed
    36.Sarafian TA, Montes C, Imura T, Qi J, Coppola G, Geschwind DH, Sofroniew MV (2010) Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro. PLoS One 5:e9532. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?009532 PubMed Central CrossRef PubMed
    37.Smith CC, Dixon RA, Wynne AM, Theodorou L, Ong SG, Subrayan S, Davidson SM, Hausenloy DJ, Yellon DM (2010) Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol 299:H1265鈥揌1270. doi:10.鈥?152/鈥媋jpheart.鈥?0092.鈥?010 PubMed Central CrossRef PubMed
    38.Smith RM, Suleman N, Lacerda L, Opie LH, Akira S, Chien KR, Sack MN (2004) Genetic depletion of cardiac myocyte STAT-3 abolishes classical preconditioning. Cardiovasc Res 63:611鈥?16. doi:10.鈥?016/鈥媕.鈥媍ardiores.鈥?004.鈥?6.鈥?19 CrossRef PubMed
    39.Stewart S, Lesnefsky EJ, Chen Q (2009) Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury. Transl Res 153:224鈥?31. doi:10.鈥?016/鈥媕.鈥媡rsl.鈥?009.鈥?2.鈥?03 CrossRef PubMed
    40.Szczepanek K, Chen Q, Derecka M, Salloum FN, Zhang Q, Szelag M, Cichy J, Kukreja RC, Dulak J, Lesnefsky EJ, Larner AC (2011) Mitochondrial-targeted Signal transducer and activator of transcription 3 (STAT3) protects against ischemia-induced changes in the electron transport chain and the generation of reactive oxygen species. J Biol Chem 286:29610鈥?9620. doi:10.鈥?074/鈥媕bc.鈥婱111.鈥?26209 PubMed Central CrossRef PubMed
    41.Toldo S, Das A, Mezzaroma E, Chau VQ, Marchetti C, Durrant D, Samidurai A, Van Tassell BW, Yin C, Ockaili RA, Vigneshwar N, Mukhopadhyay ND, Kukreja RC, Abbate A, Salloum FN (2014) Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circulation Cardiovasc Genet 7:311鈥?20. doi:10.鈥?161/鈥婥IRCGENETICS.鈥?13.鈥?00381 CrossRef
    42.Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K, Szelag M, Gornicka A, Moh A, Moghaddas S, Chen Q, Bobbili S, Cichy J, Dulak J, Baker DP, Wolfman A, Stuehr D, Hassan MO, Fu XY, Avadhani N, Drake JI, Fawcett P, Lesnefsky EJ, Larner AC (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793鈥?97. doi:10.鈥?126/鈥媠cience.鈥?164551 PubMed Central CrossRef PubMed
    43.Xu A, Szczepanek K, Maceyka MW, Ross T, Bowler E, Hu Y, Kenny B, Mehfoud C, Desai PN, Baumgarten CM, Chen Q, Lesnefsky EJ (2014) Transient complex I inhibition at the onset of reperfusion by extracellular acidification decreases cardiac injury. Am J Physiol Cell Physiol 306:C1142鈥揅1153. doi:10.鈥?152/鈥媋jpcell.鈥?0241.鈥?013 PubMed Central CrossRef PubMed
    44.Zhang Q, Raje V, Yakovlev VA, Yacoub A, Szczepanek K, Meier J, Derecka M, Chen Q, Hu Y, Sisler J, Hamed H, Lesnefsky EJ, Valerie K, Dent P, Larner AC (2013) Mitochondrial localized Stat3 promotes breast cancer growth via phosphorylation of serine 727. J Biol Chem 288:31280鈥?1288. doi:10.鈥?074/鈥媕bc.鈥婱113.鈥?05057 PubMed Central CrossRef PubMed
  • 作者单位:Karol Szczepanek (1)
    Aijun Xu (1) (3)
    Ying Hu (1)
    Jeremy Thompson (1)
    Jun He (1)
    Andrew C. Larner (4)
    Fadi N. Salloum (1)
    Qun Chen (1)
    Edward J. Lesnefsky (1) (2) (4)

    1. Division of Cardiology, Department of Internal Medicine and Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
    3. Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
    4. Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
    2. Medical Service McGuire Veterans Affairs Medical Center, McGuire VAMC Cardiology 111(J), Richmond, VA, 23249, USA
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Cardiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-1803
文摘
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that contributes a crucial role in protection against ischemia (ISC)-reperfusion (REP) injury by driving expression of anti-apoptotic and anti-oxidant genes. STAT3 is also present in the mitochondria, where it modulates the activity of the electron transport chain (ETC) and the permeability transition pore. Transgenic mice that overexpress a mitochondrial-targeted, transcriptionally inactive STAT3 in cardiomyocytes (MLS-STAT3E mice) exhibit a persistent, partial blockade of electron transfer through complex I that uniquely did not lead to tissue dysfunction at baseline, yet increased mitochondrial ischemic tolerance. The direct contribution of non-transcriptional, mitochondria-localized STAT3 to protection during ISC-REP remains to be established. We hypothesized that the enhanced mitochondrial tolerance to ischemia present in MLS-STAT3E mice would decrease cardiac injury during ISC-REP. In the isolated buffer-perfused heart model, MLS-STAT3E hearts exhibit a decreased infarct size compared to non-transgenic littermate hearts. Contractile recovery, expressed as a percent of LV developed pressure before ISC, is improved in MLS-STAT3E mice. Mitochondria isolated at the end of 60 min. of REP from MLS-STAT3E hearts show attenuated ROS release. The partial and persistent blockade of complex I present in MLS-STAT3E mice decreases cardiac injury during REP, in part via a persistent decrease in ROS production and attenuation of mitochondrial permeability transition pore opening at the onset of REP. In vivo, MLS-STAT3E hearts exhibit substantially higher postoperative survival rate and a substantial decrease in myocardial infarct size. STAT3 mediates cardioprotection not only via canonical action as a transcription factor, but also as a modulator of ETC activity directly in the mitochondria. Keywords Myocardial infarction Reactive oxygen species Necrosis Apoptosis Mitochondrial permeability transition

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700