An Electrophysiological Study of Visual Processing in Spinocerebellar Ataxia Type 2 (SCA2)
详细信息    查看全文
  • 作者:Jan Kremlacek (1) (2)
    Martin Valis (2)
    Jiri Masopust (3)
    Ales Urban (3)
    Alena Zumrova (4)
    Radomir Talab (2)
    Miroslav Kuba (1)
    Zuzana Kubova (1)
    Jana Langrova (1)
  • 关键词:Spinocerebellar ataxia type 2 ; Visual evoked potentials ; Event ; related potentials ; Motion processing
  • 刊名:The Cerebellum
  • 出版年:2011
  • 出版时间:March 2011
  • 年:2011
  • 卷:10
  • 期:1
  • 页码:32-42
  • 全文大小:374KB
  • 参考文献:1. Manto M, Marmolino D. Cerebellar disorders—at the crossroad of molecular pathways and diagnosis. Cerebellum. 2009;8(4):417-2. CrossRef
    2. Lastres-Becker I, Rub U, Auburger G. Spinocerebellar ataxia 2 (SCA2). Cerebellum [Review]. 2008;7(2):115-4. CrossRef
    3. Sch?ls L, Linnemann C, Globas C. Electrophysiology in spinocerebellar ataxias: spread of disease and characteristic findings. Cerebellum. 2008;7(2):198-03. CrossRef
    4. Perretti A, Santoro L, Lanzillo B, Filla A, De Michele G, Barbieri F, et al. Autosomal dominant cerebellar ataxia type I: multimodal electrophysiological study and comparison between SCA1 and SCA2 patients. J Neurol Sci. 1996;142(1-):45-3. doi:10.1016/0022-510X(96)00140-2 . CrossRef
    5. Abele M, Burk K, Andres F, Topka H, Laccone F, Bosch S, et al. Autosomal dominant cerebellar ataxia type I. Nerve conduction and evoked potential studies in families with SCA1, SCA2 and SCA3. Brain. 1997;120(12):2141-. CrossRef
    6. Rakowicz M, Zdzienicka E, Poniatowska R, Waliniowska E, Su?ek A, Jakubowska T, et al. Spinocerebellar ataxias type 1 and 2: comparison of clinical, electrophysiological and magnetic resonance evaluation. Neurol Neurochir Pol. 2005;39(4):263-5.
    7. Perez LV, Cruz GS, Ochoa NC, Labrada RR, Diaz JR, Mederos LA, et al. Electrophysiological features in patients and presymptomatic relatives with spinocerebellar ataxia type 2. J Neurol Sci [Article]. 2007;263(1-):158-4. CrossRef
    8. Heinrich SP. A primer on motion visual evoked potentials. Doc Ophthalmol. 2007;114(2):83-05. CrossRef
    9. Kuba M, Kubova Z, Kremlacek J, Langrova J. Motion-onset VEPs: characteristics, methods, and diagnostic use. Vis Res. 2007;47(2):189-02. CrossRef
    10. Kubova Z, Kuba M, Spekreijse H, Blakemore C. Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res. 1995;35:197-05. CrossRef
    11. Schellart NA, Trindade MJ, Reits D, Verbunt JP, Spekreijse H. Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magneto-electroencephalography. Vision Res. 2004;44(2):119-4. CrossRef
    12. van Broekhoven P, Schraa-Tam C, van der Lugt A, Smits M, Frens M, van der Geest J. Cerebellar contributions to the processing of saccadic errors. Cerebellum. 2009;8(3):403-5. doi:10.1007/s12311-009-0116-6 . CrossRef
    13. Lencer R, Trillenberg P. Neurophysiology and neuroanatomy of smooth pursuit in humans. Brain Cogn. 2008;68(3):219-8. doi:10.1016/j.bandc.2008.08.013 . CrossRef
    14. Pierrot-Deseilligny C, Gaymard B, Müri R, Rivaud S. Cerebral ocular motor signs. J Neurol. 1997;244(2):65-0. doi:10.1007/s004150050051 . CrossRef
    15. Helsinki WMADo. Ethical principles for medical research involving human subjects. 2004. http://www.wma.net/e/policy/b3.htm (updated 200423 January 2008).
    16. Schmahmann JD, Gardner R, MacMore J, Vangel MG. Development of a brief ataxia rating scale (BARS) based on a modified form of the ICARS. Mov Disord. 2009;24(12):1820-. CrossRef
    17. Langrova J, Kuba M, Kremlacek J, Kubova Z, Vit F. Motion-onset VEPs reflect long maturation and early aging of visual motion-processing system. Vis Res. 2006;46(4):536-4. CrossRef
    18. Bauer PO, Kotliarova SE, Matoska V, Musova Z, Hedvicakova P, Boday A, et al. Fluorescent multiplex PCR—fast method for autosomal dominant spinocerebellar ataxias screening. Genetika. 2005;41(6):830-.
    19. Brainard DH. The psychophysics toolbox. Spat Vis. 1997;10(4):433-. CrossRef
    20. Kremlacek J, Kuba M, Kubova Z, Chlubnova J. Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol. 2004;109(2):169-5. CrossRef
    21. Urban A, Kremlacek J, Masopust J, Libiger J. Visual mismatch negativity among patients with schizophrenia. Schizophr Res. 2008;102(1-):320-. CrossRef
    22. van de Warrenburg BPC, Hendriks H, Dürr A, Zuijlen MCAv, Stevanin G, Camuzat A, et al. Age at onset variance analysis in spinocerebellar ataxias: a study in a Dutch–French cohort. Ann Neurol. 2005;57(4):505-2. CrossRef
    23. Di Russo F, Pitzalis S, Spitoni G, Aprile T, Patria F, Spinelli D, et al. Identification of the neural sources of the pattern-reversal VEP. Neuroimage. 2005;24(3):874-6. CrossRef
    24. Restivo DA, Lanza S, Saponara R, Rapisarda G, Giuffrida S, Palmeri A. Changes of cortical excitability of human motor cortex in spinocerebellar ataxia type 2: a study with paired transcranial magnetic stimulation. J Neurol Sci. 2002;198(1-):87-2. doi:10.1016/S0022-510X(02)00086-2 . CrossRef
    25. Brenneis C, Bosch SM, Schocke M, Wenning GK, Poewe W. Atrophy pattern in SCA2 determined by voxel-based morphometry. NeuroReport. 2003;14(14):1799-02. CrossRef
    26. Manto M-U. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum. 2005;4(1):2-. doi:10.1080/14734220510007914 . CrossRef
    27. Yi? U, Dirik E, Kurul S, Eken A, Ba?ak A. Two young sisters with spinocerebellar ataxia type 2 showing different clinical progression of disease. Cerebellum. 2009;8(2):127-. doi:10.1007/s12311-008-0080-6 . CrossRef
    28. Velázquez-Perez L, Rodríguez-Labrada R, Canales-Ochoa N, Sanchez-Cruz G, Fernandez-Ruiz J, Montero JM, et al. Progression markers of spinocerebellar ataxia 2. A twenty years neurophysiological follow up study. J Neurol Sci. 2010;290(1-):22-. doi:10.1016/j.jns.2009.12.013 . CrossRef
  • 作者单位:Jan Kremlacek (1) (2)
    Martin Valis (2)
    Jiri Masopust (3)
    Ales Urban (3)
    Alena Zumrova (4)
    Radomir Talab (2)
    Miroslav Kuba (1)
    Zuzana Kubova (1)
    Jana Langrova (1)

    1. Department of Pathophysiology, Faculty of Medicine, Charles University in Prague, Simkova 870, 500 38, Hradec Kralove, Czech Republic
    2. Department of Neurology, Faculty of Medicine, Charles University in Prague, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
    3. Department of Psychiatry, Faculty of Medicine, Charles University in Prague, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
    4. Neurogenetic Centre, 2nd Faculty of Medicine of Charles University and Faculty Hospital Motol, Prague, Czech Republic
  • ISSN:1473-4230
文摘
Reports of visual functional impairment in spinocerebellar ataxia type 2 (SCA2) have been studied previously using pattern reversal visually evoked potentials (VEPs) with contradictory results. To provide additional evidence to this area, visual functions were studied using VEPs and event-related potentials (ERPs) in a group of ten patients with genetically verified SCA2. The electrophysiological examination included pattern reversal and motion-onset VEPs as well as visually driven oddball ERPs with an evaluation of a target and a pre-attentive response. In six patients, we found abnormal visual/cognitive processing that differed from normal values in latency, but not in the amplitude of the dominant VEP/ERP peaks. Among the VEPs/ERPs used, the motion-onset VEPs exhibited the highest sensitivity and showed a strong Spearman correlation to SCA2 duration (from r--.82 to r--.90, p-lt;-.001) and clinical state assessed by Brief Ataxia Rating Scale (from r--.71 (p--.022) to r--.80 (p-lt;-.001)). None of the VEP/ERP latencies showed a correlation to the triplet repeats of the SCA2 gene. In three patients, we did not find any visual/cognitive pathology, and one subject showed only a single subtle prolongation of the VEP peak. The observed visual/cognitive deficit was related to the subjects-clinical state and the illness duration, but no relationship to the genetic marker of SCA2 was found. From the VEP/ERP types used, the motion-onset VEPs seems to be the most promising candidate for clinical state monitoring rather than a tool for early diagnostic use.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700