Autophagic and proteolytic processes in the Harderian gland are modulated during the estrous cycle
详细信息    查看全文
  • 作者:M. García-Macia (1)
    A. Rubio-Gonzalez (1)
    B. de Luxán-Delgado (1)
    Y. Potes (1)
    S. Rodríguez-González (1)
    D. de Gonzalo-Calvo (1)
    J. A. Boga (2)
    A. Coto-Montes (1)
  • 关键词:Autophagy ; Estrous cycle ; Sexual hormones ; Proteolysis ; Porphyria
  • 刊名:Histochemistry and Cell Biology
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:141
  • 期:5
  • 页码:519-529
  • 全文大小:927 KB
  • 参考文献:1. Antolin I, Rodriguez C, Uria H, Sainz RM, Mayo JC, Kotler ML, Rodriguez-Colunga MJ, Tolivia D, Menendez-Pelaez A (1996) Castration increases cell damage induced by porphyrins in the Harderian gland of male Syrian hamster. Necrosis and not apoptosis mediates the subsequent cell death. J Struct Biol 116(3):377-89
    2. Arnao MB, Cano A, Acosta M (2001) The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73:239-44
    3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54
    4. Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC (1997) Protein carbonyl measurement by a sensitive ELISA method. Free Radical Biol Med 23(3):361-66
    5. Chiang GG, Abraham RT (2005) Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is mediated by p70S6 kinase. J Biol Chem 280(27):25485-5490. doi:10.1074/jbc.M501707200
    6. Coto-Montes AM, Rodriguez-Colunga MJ, Uria H, Antolin I, Tolivia D, Buzzell GR, Menendez-Pelaez A (1994) Photoperiod and the pineal gland regulate the male phenotype of the Harderian glands of male Syrian hamsters after androgen withdrawal. J Pineal Res 17(1):48-4
    7. Coto-Montes AM, Rodriguez-Colunga MJ, Tolivia D, Menendez-Pelaez A (1996) Immunocytochemical localization of melatonin in the Harderian gland of Syrian hamster. Anat Rec 245(1):13-6
    8. Coto-Montes A, Boga JA, Tomas-Zapico C, Rodriguez-Colunga MJ, Martinez-Fraga J, Tolivia-Cadrecha D, Menendez G, Hardeland R, Tolivia D (2001a) Physiological oxidative stress model: Syrian hamster Harderian gland-sex differences in antioxidant enzymes. Free Radical Biol Med 30(7):785-92
    9. Coto-Montes A, Boga JA, Tomas-Zapico C, Rodriguez-Colunga MJ, Martinez-Fraga J, Tolivia-Cadrecha D, Menendez G, Hardeland R, Tolivia D (2001b) Porphyric enzymes in hamster Harderian gland, a model of damage by porphyrins and their precursors. A chronobiological study on the role of sex differences. Chem Biol Interact 134(2):135-49
    10. Coto-Montes A, Tomas-Zapico C, Martinez-Fraga J, Vega-Naredo I, Sierra V, Caballero B, Huidobro-Fernandez C, Soria-Valles C, Tolivia D, Rodriguez-Colunga MJ (2009) Sexual autophagic differences in the androgen-dependent flank organ of Syrian hamsters. J Androl 30(2):113-21
    11. Cuervo AM, Dice JF (1996) A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273(5274):501-03
    12. Farfaras A, Zagouri F, Zografos G, Kostopoulou A, Sergentanis TN, Antoniou S (2010) Acute intermittent porphyria in pregnancy: a common misdiagnosis. Clin Exp Obstet Gynecol 37(4):256-60
    13. Fung C, Lock R, Gao S, Salas E, Debnath J (2008) Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell 19(3):797-06
    14. Furuya N, Yu J, Byfield M, Pattingre S, Levine B (2005) The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1(1):46-2
    15. Garcia-Macia M, Vega-Naredo I, De Gonzalo-Calvo D, Rodriguez-Gonzalez SM, Camello PJ, Camello-Almaraz C, Martin-Cano FE, Rodriguez-Colunga MJ, Pozo MJ, Coto-Montes AM (2011) Melatonin induces neural SOD2 expression independent of the NF-kappaB pathway and improves the mitochondrial population and function in old mice. J Pineal Res 50(1):54-3
    16. Goldberg A (1959) Acute intermittent porphyria: a study of 50 cases. Q J Med 28(110):183-09
    17. Hoffman RA, Johnson LB, Reiter RJ (1985) Harderian glands of golden hamsters: temporal and sexual differences in immunoreactive melatonin. J Pineal Res 2(2):161-68
    18. Lyberatos C, Chalevelakis G, Platis A, Gardikas C (1972) Urinary porphyrins and their precursors in human pregnancy and after delivery. J Obstet Gynaecol Br Commonw 79(10):921-23
    19. Marrufo B, Menendez-Pelaez A, Buzzell GR, Gonzalez-Brito A, Reiter RJ (1989) 5 alpha-dihydrotestosterone administration converts indolamine metabolism and porphyrin content of the female Syrian hamster Harderian gland to the male type. Proc Soc Exp Biol Med 192(2):192-95
    20. McColl KE, Wallace AM, Moore MR, Thompson GG, Goldberg A (1982) Alterations in haem biosynthesis during the human menstrual cycle: studies in normal subjects and patients with latent and active acute intermittent porphyria. Clin Sci (Lond) 62(2):183-91
    21. Menendez-Pelaez A, Rodriguez-Colunga MJ, Rodriguez C, Tolivia D, Dominguez P (1992) Effects of human chorionic gonadotropin and progesterone administration on porphyrin biosynthesis and histology of the Harderian glands in male and female Syrian hamsters. Biol Reprod 47(3):307-15
    22. Mukhopadhyay NK, Price DJ, Kyriakis JM, Pelech S, Sanghera J, Avruch J (1992) An array of insulin-activated, proline-directed serine/threonine protein kinases phosphorylate the p70 S6 kinase. J Biol Chem 267(5):3325-335
    23. Navarro A, Torrejon R, Bandez MJ, Lopez-Cepero JM, Boveris A (2005) Mitochondrial function and mitochondria-induced apoptosis in an overstimulated rat ovarian cycle. Am J Physiol Endocrinol Metab 289(6):E1101–E1109
    24. Orsini MW (1961) The external vaginal phenomena characterizing the stages of the estrous cycle, pregnancy, pseudopregnancy, lactation, and the anestrous hamster, / Mesocricetus auratus waterhouse. Proc Anim Care Panel 11(4):193-06
    25. Payne AP, McGadey J, Moore MR, Thompson G (1977) Androgenic control of the Harderian gland in the male golden hamster. J Endocrinol 75(1):73-2
    26. Payne AP, McGadey J, Moore MH, Thompson GG (1979) Changes in Harderian gland activity in the female golden hamster during the oestrous cycle, pregnancy and lactation. Biochem J 178(3):597-04
    27. Pullen N, Thomas G (1997) The modular phosphorylation and activation of p70s6k. FEBS Lett 410(1):78-2
    28. Rodriguez-Colunga MJ, Fernandez C, Antolin I, Rodriguez C, Tolivia D, Menendez-Pelaez A (1991) Chronic administration of melatonin induces changes in porphyrins and in the histology of male and female hamster Harderian gland: interrelation with the gonadal status. J Pineal Res 11(1):42-8
    29. Rodriguez-Colunga MJ, Rodriguez C, Antolin I, Uria H, Tolivia D, Vaughan MK, Menendez-Pelaez A (1993) Development and androgen regulation of the secretory cell types of the Syrian hamster (Mesocricetus auratus) Harderian gland. Cell Tissue Res 274(1):189-97
    30. Rodríguez-Colunga MJ, Menendez-Pelaez A, Vaughan MK, Reiter RJ (1993) Gender-associated differences in the development of 5-aminolevulinate synthase gene expression in the Harderian gland of Syrian hamsters. Mol Cell Endocrinol 93:167-73
    31. Thiessen D, Rice M (1976) Mammalian scent gland marking and social behavior. Psychol Bull 83(4):505-39
    32. Tomas-Zapico C, Martinez-Fraga J, Rodriguez-Colunga MJ, Tolivia D, Hardeland R, Coto-Montes A (2002) Melatonin protects against delta-aminolevulinic acid-induced oxidative damage in male Syrian hamster Harderian glands. Int J Biochem Cell Biol 34(5):544-53
    33. Tomas-Zapico C, Antonio Boga J, Caballero B, Vega-Naredo I, Sierra V, Alvarez-Garcia O, Tolivia D, Josefa Rodriguez-Colunga M, Coto-Montes A (2005a) Coexpression of MT1 and RORalpha1 melatonin receptors in the Syrian hamster Harderian gland. J Pineal Res 39(1):21-6
    34. Tomas-Zapico C, Caballero B, Sierra V, Vega-Naredo I, Alvarez-Garcia O, Tolivia D, Rodriguez-Colunga MJ, Coto-Montes A (2005b) Survival mechanisms in a physiological oxidative stress model. Faseb J 19(14):2066-068
    35. Vega-Naredo I, Coto-Montes A (2009) Physiological autophagy in the Syrian hamster Harderian gland. Methods Enzymol 452:457-76
    36. Vega-Naredo I, Caballero B, Sierra V, Huidobro-Fernandez C, de Gonzalo-Calvo D, Garcia-Macia M, Tolivia D, Rodriguez-Colunga MJ, Coto-Montes A (2009) Sexual dimorphism of autophagy in Syrian hamster Harderian gland culminates in a holocrine secretion in female glands. Autophagy 5(7):1004-017
    37. Vega-Naredo I, Caballero B, Sierra V, Garcia-Macia M, de Gonzalo-Calvo D, Oliveira PJ, Rodriguez-Colunga MJ, Coto-Montes A (2012) Melatonin modulates autophagy through a redox-mediated action in female Syrian hamster Harderian gland controlling cell types and gland activity. J Pineal Res 52(1):80-2
    38. Vilchis F, Perez-Palacios G (1989) Steroid hormone receptors and the sexual phenotype of the Harderian gland in hamsters. J Endocrinol 121(1):149-56
    39. Vilchis F, Ramos L, Timossi C, Chavez B (2006) The influence of sex steroid hormones on ferrochelatase gene expression in Harderian gland of hamster (Mesocricetus auratus). J Endocrinol 189(1):103-12
    40. Wang SY, Yu QJ, Zhang RD, Liu B (2011) Core signaling pathways of survival/death in autophagy-related cancer networks. Int J Biochem Cell Biol 43(9):1263-266
    41. Yi J, Tang XM (1995) Functional implication of autophagy in steroid-secreting cells of the rat. Anat Rec 242(2):137-46
  • 作者单位:M. García-Macia (1)
    A. Rubio-Gonzalez (1)
    B. de Luxán-Delgado (1)
    Y. Potes (1)
    S. Rodríguez-González (1)
    D. de Gonzalo-Calvo (1)
    J. A. Boga (2)
    A. Coto-Montes (1)

    1. Department of Morphology and Cellular Biology, Cellular Biology Area, Faculty of Medicine, University of Oviedo, Julián Clavería s/n, 33006, Oviedo, Spain
    2. Servicio de Microbiología, Hospital Universitario Central de Asturias, Celestino Villamil s/n, 33006, Oviedo, Spain
  • ISSN:1432-119X
文摘
The Syrian hamster Harderian gland (HG) is an organ that undergoes physiological autophagy in response to oxidative stress induced by porphyrin production. Porphyrin production in the HG has marked sex differences and is closely linked to reproductive function. In the present study, we observed that the estrous cycle and associated estrogen variations may affect oxidative-stress-induced proteolytic processes. In particular, significant changes in autophagic activity were detected during the estrous cycle. Notably, increased activation of macroautophagy as well as chaperone-mediated autophagy in the estrus phase coincided with a minimal antioxidant capability and the highest protein damage levels. By contrast, autophagic machinery was found to be blocked in the diestrus phase, likely due to mammalian target of rapamycin activation, which could be corroborated by the subsequent pS6K activation. Analogous results were observed regarding proteasome activity, which also showed maximal activity in the estrus phase. Interestingly, all these mechanisms were associated with important morphological changes in the HG during the estrous cycle. We observed statistically significant increases in Type II cells, which may be related to extensive autophagy in the estrus phase. Physiologically, this would result in a significant release of porphyrins specifically when females are more receptive. These data support the role of porphyrins as pheromones, as other authors have previously suggested, thus making the HG a scent organ. In addition, these results suggest a porphyrin-based approach to the treatment of porphyria during pregnancy, a condition for which no treatment is currently known.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700