Preparation of polyethylene-graft-clay nanocomposites using Friedel–Crafts alkylation reaction as a new method
详细信息    查看全文
  • 作者:A. Pourabed ; A. Tavakoli ; B. Pourabbas ; M. K. Razavi Aghjeh
  • 关键词:Polyethylene ; Clay ; Nanocomposite ; Grafting ; Surface modification
  • 刊名:Iranian Polymer Journal
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:24
  • 期:9
  • 页码:705-714
  • 全文大小:677 KB
  • 参考文献:1.Zhang J, Manias E, Wilkie CA (2008) Polymerically modified layered silicates: an effective route to nanocomposites. J Nanosci Nanotechnol 9:1597-615CrossRef
    2.Tasdelen MA, Kreutzer J, Yagci Y (2010) In situ synthesis of polymer/clay nanocomposites by living and controlled/living polymerization macromol. Chem Phys 211:279-85
    3.Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119-198CrossRef
    4.Tai Q, Shan X, Song L, Lo S, Yuen RKK, Hu Y (2014) A polymeric flame retardant and surfactant-free montmorillonite nanocomposites: preparation and exfoliation mechanism discussion. Polym Compos 35:167-73CrossRef
    5.Kalendova A, Merinska D, Gerard JF, Slouf M (2013) Polymer/clay nanocomposites and their gas barrier properties. Polym Compos 34:1418-424CrossRef
    6.Altinkok C, Uyar T, Tasdelen MA, Yagci Y (2011) In situ synthesis of polymer/clay nanocomposites by type II photoinitiated free radical polymerization. J Polym Sci 49:3658-663CrossRef
    7.Zhang J, Jiang DD, Wang D, Wilkie CA (2006) Styrenic polymer nanocomposites based on an oligomerically-modified clay with high inorganic content. Polym Degrad Stab 91:2665-674CrossRef
    8.Zang Y, Xu W, Qiu D, Chen D, Chen R, Su Sh (2008) Synthesis, characterization and thermal stability of different polystyryl quaternary ammonium surfactants and their montmorillonite complexes. Thermochim Acta 474:1-CrossRef
    9.Nguyen QT, Baird DG (2006) Preparation of polymer/clay nanocomposites and their properties. Adv Polym Technol 25:270-85CrossRef
    10.Sanchez-Valdes S, Mendez-Nonell J, Medellin-Rodriguez FJ, Ramirez-Vargas E, Martinez-Colunga JG, Ramos de Valle LF, Mondragon-Chaparro M, Lopez-Quintanilla ML, Garcia-Salazar ML (2010) Evaluation of different amine-functionalized polyethylenes as compatibilizers for polyethylene film nanocomposites. Polym Int 59:704-11
    11.Ercan N, Durmus A, Soyubol G, Kasgoz A, Aydin I (2010) Rheological and barrier properties of HDPE/clay nanocomposites compatibilized by an OX-PE blend. Acad J Manuf Eng 8:55-0
    12.George TS, Krishnan A, Joseph N, Anjana R, George KE (2012) Effect of maleic anhydride grafting on nanokaolinclay reinforced polystyrene/high density polyethylene blends. Polym Compos 33:1465-472CrossRef
    13.Garcia-Lopez D, Picazo O, Merino JC, Pastor JM (2003) Polypropylene-clay nanocomposites: effect of compatibilizing agents on clay dispersion. Eur Polym J 39:945-50CrossRef
    14.Minkova L, Peneva Y, Tashev E, Filippi S, Pracella M, Magagnini P (2009) Thermal properties and microhardness of HDPE/clay nanocomposites compatibilized by different functionalized polyethylenes. Polym Test 28:528-33CrossRef
    15.Varela C, Rosales C, Perera R, Matos M, Poirier T, Blunda J, Rojas H (2006) Functionalized polypropylenes in the compatibilization and dispersion of clay nanocomposites. Polym Compos 27:451-60CrossRef
    16.Durmus A, Kasgoz A, Macosko CW (2008) Mechanical properties of linear low density (LLPE)/clay nanocomposites: estimation of aspect ratio and interfacial strength by composite models. J Macromol Sci Phys 47:608-19CrossRef
    17.Diaz MF, Barbosa SE, Capiati NJ (2004) Polypropylene/polystyrene blends: in situ compatibilization by Friedel–Crafts alkylation reaction. J Polym Sci 42:452-62CrossRef
    18.Zhang J, Jiang DD, Wang D, Wilkie CA (2005) Mechanical and fire properties of styrenic polymer nanocomposites based on an oligomerically-modified clay. Polym Adv Technol 16:800-06CrossRef
    19.Mandake MB, Anekar SV, Walke SM (2013) Kinetic study of catalyzed and uncatalyzed esterification reaction of acetic acid with methanol. AIJRSTEM 3:114-21
    20.Shahbazi K, Razavi Aghjeh MK, Abbasi F, Partovi Meran M, Mehrabi Mazidi M (2012) Rheology, morphology and tensile properties of reactive compatibilized polyethylene/polystyrene blends via Friedel–Crafts alkylation reaction. Polym Bull 69:241-59CrossRef
    21.Fan X, Xia C, Advincula RC (2003) Grafting of polymers from clay nanoparticles via in situ free radical surface-initiated polymerization: monocationic versus bicotionic initiators. Langmuir 19:4381-389CrossRef
    22.Zha W, Choi S, Lee KM, Han CD (2005) Dispersion characteristics of organoclay in nanocomposites based on end-functionalized homopolymer and block copolymer. Macromolecules 20:8418-429CrossRef
    23.Zhang M, Sundararaj U (2006) Thermal, rheological, and mechanical behaviors of LLDPE/PEMA/Clay nanocomposites: effect of interaction between polymer, compatibilizer, and nanofiller. Macromol Mater Eng 291:697-06CrossRef
    24.Nayak SK, Mohanty S (2009) Dynamic mechanical, rheological, and thermal properties of intercalated polystyrene/organomontmorillonite nanocomposites: effect of clay modification on the mechanical and morphological behaviors. J Appl Polym Sci 112:778-87CrossRef
    25.Mehrabzadeh M, Kamal MR (2008) Polymer-clay nanocomposites based on blends of polyamide 6 and polyethylene. Can J Chem Eng 80:
  • 作者单位:A. Pourabed (1)
    A. Tavakoli (2)
    B. Pourabbas (1)
    M. K. Razavi Aghjeh (1)

    1. Polymer Engineering Department, Institute of Polymeric Materials, Sahand University of Technology, Sahand New Town, Tabriz, 51335-1996, Iran
    2. Chemical Engineering Department, Sahand University of Technology, Sahand New Town, Tabriz, 51335-1996, Iran
  • 刊物主题:Polymer Sciences; Ceramics, Glass, Composites, Natural Methods;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1735-5265
文摘
The main objective of this study was chemical grafting of polyethylene (PE) chains onto clay surfaces in PE/clay nanocomposites. Clay (Cloisite 30B) particles were successfully modified using a laboratory-synthesized carboxylic acid end-functionalized polystyrene (F-PS) and a commercial styrene–maleic anhydride copolymer (SMA). SMA showed higher grafting efficiency than F-PS. It is related to lower molecular weight and higher compatibility of SMA with Cloisite 30B particles. Both modified Cloisite 30B particles were used in preparation of PE nanocomposites where AlCl3 catalyst was used for chemical grafting of PE chains onto polystyrene (PS) or SMA chains, pendant from the clay particles surfaces. Using AlCl3 increased the storage modulus and decreased the damping factor, particularly at low-frequency ranges. It was related to the chemical grafting of the PE chains onto the PS segments of the SMA copolymer and the PS chains of F-PS on the clay particle surfaces via Friedel–Crafts alkylation reaction. Catalyzed nanocomposites showed better clay dispersion than those of the plain nanocomposites. It is believed that chemical grafting of PE chains onto clay particles surfaces provided effective stress transfer from PE matrix to clay tactoids resulting in delamination and higher degree of clay exfoliation. Keywords Polyethylene Clay Nanocomposite Grafting Surface modification

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700