Is there a relationship between PPARD T294C/PPARGC1A Gly482Ser variations and physical endurance performance in the Korean population?
详细信息    查看全文
  • 作者:Han-Jun Jin ; In-Wook Hwang ; Ki-Cheol Kim ; Hyun-Ik Cho ; Tae-Hwan Park…
  • 关键词:Physical performance ; Association study ; PPARGC1A ; PPARD ; Endurance athlete status
  • 刊名:Genes & Genomics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:38
  • 期:4
  • 页码:389-395
  • 全文大小:387 KB
  • 参考文献:Ahmetov II, Fedotovskaya ON (2012) Sports genomics: current state of knowledge and future directions. Cell Mol Exerc Physiol 1:e1CrossRef
    Akhmetov II, Astranenkova IV, Rogozkin VA (2007) Association of PPARD gene polymorphism with human physical performance. Mol Biol (Mosk) 41:852–857
    Alfred T, Ben-Shlomo Y, Cooper R, Hardy R, Cooper C, Deary IJ, Gunnell D, Harris SE, Kumari M, Martin RM, Moran CN, Pitsiladis YP, Ring SM, Sayer AA, Smith GD, Starr JM, Kuh D, Day IN, HALCyon Study (2011) ACTN3 genotype, athletic status, and life course physical capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat 32:1008–1018CrossRef PubMed PubMedCentral
    Buxens A, Ruiz JR, Arteta D, Artieda M, Santiago C, González-Freire M, Martínez A, Tejedor D, Lao JI, Gómez-Gallego F, Lucia A (2011) Can we predict top-level sports performance in power vs endurance events? A genetic approach. Scand J Med Sci Sports 21:570–579CrossRef PubMed
    Cordain L, Latin RW, Behnke JJ (1986) The effects of an aerobic running program on bowel transit time. J Sports Med Phys Fitness 26:101–104PubMed
    Costill DL, Thomason H, Roberts E (1973) Fractional utilization of the aerobic capacity during distance running. Med Sci Sports 5:248–252PubMed
    Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688PubMed
    Ek J, Andersen G, Urhammer SA, Gaede PH, Drivsholm T, Borch-Johnsen K, Hansen T, Pedersen O (2001) Mutation analysis of peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus. Diabetologia 44:2220–2226CrossRef PubMed
    Eynon N, Meckel Y, Alves AJ, Yamin C, Sagiv M, Goldhammer E, Sagiv M (2009) Is there an interaction between PPARD T294C and PPARGC1A Gly482Ser polymorphisms and human endurance performance? Exp Physiol 94:1147–1152CrossRef PubMed
    Eynon N, Meckel Y, Sagiv M, Yamin C, Amir R, Sagiv M, Goldhammer E, Duarte JA, Oliveira J (2010) Do PPARGC1A and PPARalpha polymorphisms influence sprint or endurance phenotypes? Scand J Med Sci Sports 20:e145–e150CrossRef PubMed
    Eynon N, Ruiz JR, Oliveira J, Duarte JA, Birk R, Lucia A (2011) Genes and elite athletes: a roadmap for future research. J Physiol 589:3063–3070CrossRef PubMed PubMedCentral
    Farrell PA, Wilmore JH, Coyle EF, Billing JE, Costill DL (1979) Plasma lactate accumulation and distance running performance. Med Sci Sports 11:338–344PubMed
    Fiuza-Luces C, Ruiz JR, Rodríguez-Romo G, Santiago C, Gómez-Gallego F, Yvert T, Cano-Nieto A, Garatachea N, Morán M, Lucia A (2011) Are ‘endurance’ alleles ‘survival’ alleles? Insights from the ACTN3 R577X polymorphism. PLoS One 6:e17558CrossRef PubMed PubMedCentral
    Gonzalez-Freire M, Santiago C, Verde Z, Lao JI, Oiivan J, Gómez-Gallego F, Lucia A (2009) Unique among unique. Is it genetically determined? Br J Sports Med 43:307–309CrossRef PubMed
    Guilherme JPLF, Tritto ACC, North KN, Lancha Junior AH, Artioli GG (2014) Genetics and sport performance: current challenges and directions to the future. Rev Bras Educ Fis Esporte 28:177–193CrossRef
    Hara K, Tobe K, Okada T, Kadowaki H, Akanuma Y, Ito C, Kimura S, Kadowaki T (2002) A genetic variation in the PGC-1 gene could confer insulin resistance and susceptibility to Type II diabetes. Diabetologia 45:740–743CrossRef PubMed
    He Z, Hu Y, Feng L, Bao D, Wang L, Li Y, Wang J, Liu G, Xi Y, Wen L, Lucia A (2008) Is there an association between PPARGC1A genotypes and endurance capacity in Chinese men? Scand J Med Sci Sports 18:195–204CrossRef PubMed
    Hong SS, Jin HJ (2013) Assessment of association of ACTN3 genetic polymorphism with Korean elite athletic performance. Genes Genom 35:617–621CrossRef
    Hong MS, Kim HK, Shin DH, Song DK, Ban JY, Kim BS, Chung JH (2008) Integrative study on PPARGC1A: hypothalamic expression of Ppargc1a in ob/ob mice and association between PPARGC1A and obesity in Korean population. Mol Cell Toxicol 4:318–322
    Lewis CM (2002) Genetic association studies: design, analysis and interpretation. Brief Bioinform 3:146–153CrossRef PubMed
    Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151CrossRef PubMed
    Lucia A, Gomez-Gallego F, Barroso I, Rabadán M, Bandrés F, San Juan AF, Chicharro JL, Ekelund U, Brage S, Earnest CP, Wareham NJ, Franks PW (2005) PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J Appl Physiol 99:344–348CrossRef PubMed
    MacArthur DG, North KN (2005) Genes and human elite athletic performance. Hum Genet 116:331–339CrossRef PubMed
    MacArthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW, Lemckert FA, Kee AJ, Edwards MR, Berman Y (2007) Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet 39:1261–1265CrossRef PubMed
    Maciejewska A, Sawczuk M, Cieszczyk P, Mozhayskaya IA, Ahmetov II (2012) The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J Sports Sci 30:101–113CrossRef PubMed
    Maciejewska-Karlowska A (2013) Polymorphic variants of the PPAR (peroxisome proliferator-activated receptor) genes: relevance for athletic performance. Trends Sport Sci 1:5–15
    Maciejewska-Karlowska A, Hanson ED, Sawczuk M, Cieszczyk P, Eynon N (2014) Genomic haplotype within the peroxisome proliferator-activated receptor delta (PPARD) gene is associated with elite athletic status. Scand J Med Sci Sports 24:e148–e155CrossRef PubMed
    Mills M, Yang N, Weinberger R, Vander Woude DL, Beggs AH, Easteal S, North K (2001) Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy. Hum Mol Genet 10:1335–1346CrossRef PubMed
    Montgomery H, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, Hayward M, Holliman D, Jubb M (1998) Human gene for physical performance. Nature 393:221–222CrossRef PubMed
    Muller YL, Bogardus C, Beamer BA, Shuldiner AR, Baier LJ (2003) A functional variant in the peroxisome proliferator-activated receptor gamma2 promoter is associated with predictors of obesity and type 2 diabetes in Pima Indians. Diabetes 52:1864–1871CrossRef PubMed
    Nishida Y, Iyadomi M, Higaki Y, Tanaka H, Kondo Y, Otsubo H, Horita M, Hara M, Tanaka K (2015) Association between the PPARGC1A polymorphism and aerobic capacity in Japanese middle-aged men. Intern Med 54:359–366CrossRef PubMed
    North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH (1999) A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat Genet 21:353–354CrossRef PubMed
    Ostrander EA, Huson HJ, Ostrander GK (2009) Genetics of athletic performance. Annu Rev Genom Hum Genet 10:407–429CrossRef
    Proia P, Bianco A, Schiera G, Saladino P, Contrò V, Caramazza G, Traina M, Grimaldi KA, Palma A, Paoli A (2014) PPARα gene variants as predicted performance-enhancing polymorphisms in professional Italian soccer players. Open Access J Sports Med 5:273–278PubMed PubMedCentral
    Ramsbottom R, Brewer J, Williams C (1988) A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med 22:141–144CrossRef PubMed PubMedCentral
    Romero R, Kuivaniemi H, Tromp G, Olson J (2002) The design, execution, and interpretation of genetic association studies to decipher complex diseases. Am J Obstet Gynecol 187:1299–1312CrossRef PubMed
    Rowell LB, Taylor HL, Wang Y, Carlson WS (1964) Saturation of arterial blood with oxyzen during maximal exercise. J Appl Physiol 19:284–286PubMed
    Shin HD, Park BL, Kim LH, Jung HS, Cho YM, Moon MK, Park YJ, Lee HK, Park KS (2004) Genetic polymorphisms in peroxisome proliferator-activated receptor delta associated with obesity. Diabetes 53:847–851CrossRef PubMed
    Skogsberg J, Kannisto K, Cassel TN, Hamsten A, Eriksson P, Ehrenborg E (2003) Evidence that peroxisome proliferator-activated receptor delta influences cholesterol metabolism in men. Arterioscler Thromb Vasc Biol 23:637–643CrossRef PubMed
    Stumvoll M, Fritsche A, t’Hart LM, Machann J, Thamer C, Tschritter O, Van Haeften TW, Jacob S, Dekker JM, Maassen JA, Machicao F, Schick F, Heine RJ, Häring H (2004) The Gly482Ser variant in the peroxisome proliferator-activated receptor gamma coactivator-1 is not associated with diabetes-related traits in non-diabetic German and Dutch populations. Exp Clin Endocrinol Diabetes 112:253–257CrossRef PubMed
    Suminaga R, Matsuo M, Takeshima Y, Nakamura H, Wada H (2000) Nonsense mutation of the alpha-actinin-3 gene is not associated with dystrophinopathy. Am J Med Genet 92:77–78CrossRef PubMed
    Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4:e72CrossRef PubMed PubMedCentral
  • 作者单位:Han-Jun Jin (1)
    In-Wook Hwang (1)
    Ki-Cheol Kim (2)
    Hyun-Ik Cho (3)
    Tae-Hwan Park (3)
    Yun-A Shin (4)
    Ho-Seong Lee (4)
    Ji-Hyun Hwang (4)
    Ah-Ram Kim (4)
    Kwang-Hee Lee (2)
    Ye-Eun Shin (1)
    Ji-Yeon Lee (1)
    Ji-Ae Kim (2)
    Eun-Ji Choi (2)
    Bo-Kyeong Kim (2)
    Hee-Seob Sim (2)
    Min-Seok Kim (4)
    Wook Kim (2)

    1. Department of Nanobiomedical Science, Dankook University, Cheonan, 330-714, Republic of Korea
    2. Department of Biological Sciences, Dankook University, Cheonan, 330-714, Republic of Korea
    3. Department of Sports Management, Dankook University, Cheonan, 330-714, Republic of Korea
    4. Department of Kinesiology and Medical Science, Dankook University, Cheonan, 330-714, Republic of Korea
  • 刊物主题:Microbial Genetics and Genomics; Plant Genetics & Genomics; Animal Genetics and Genomics; Human Genetics;
  • 出版者:Springer Netherlands
  • ISSN:2092-9293
文摘
The peroxisome proliferator-activated receptor δ (PPARD) and peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A) genes recently have been suggested to have an association with athletic performance and physical endurance. These gene products are reported to be crucial components in training-induced muscle adaptation, since they are related with mRNA and/or protein activity in coordinated response to exercise. To assess the possible contribution of the PPARD T294C/PPARGC1A Gly482Ser polymorphism to differences in physical endurance, we performed a population-based study of 111 Korean athletes and 145 healthy controls based on their genotype distribution of the genes. The two loci were found to be not deviated from Hardy–Weinberg equilibrium. There were no differences in genotype distribution of PPARD T294C and PPARGC1A Gly482Ser between the athletic group and controls (p > 0.05). In contrast, we found a significant association between the PPARGC1A Gly482Ser polymorphism and the 20 m shuttle run activity (a measure of endurance performance) in the athletic group (p = 0.003). The result showed a remarkable increase in the numbers of shuttle run ratio from subjects with the PPARGC1A Gly/Gly genotype (85.29 ± 28.80) than those with the Gly/Ser (58.05 ± 32.76) and Ser/Ser (68.38 ± 30.47) genotypes. Thus, our data imply that the PPARGC1A Gly/Gly genotype may provide a beneficial effect on elite-level endurance status, although functional studies with larger sample sizes are necessary to elucidate these findings.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700