Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: forecast and predictability error
详细信息    查看全文
  • 作者:Samir Pokhrel ; Subodh Kumar Saha ; Ashish Dhakate ; Hasibur Rahman…
  • 关键词:Indian summer monsoon rainfall ; Predictability error ; Forecast error ; CFSv2
  • 刊名:Climate Dynamics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:46
  • 期:7-8
  • 页码:2305-2326
  • 全文大小:27,128 KB
  • 参考文献:Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167CrossRef
    Ajaya Mohan RS, Goswami BN (2003) Potential predictability of the Asian summer monsoon on monthly and seasonal time scales. Atmos Phys, Meteor. doi:10.​1007/​s00703-002-0576-4
    Ashok K, Zhaoyong G, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Res Lett, Geo. doi:10.​1029/​2001GL013294
    Blanford HF (1884) On the connection of the Himalaya snow fall with dry winds and seasons of drought in India. Proc R Soc Lond 37:3–22CrossRef
    Brankovic C, Palmer TN, Ferranti L (1994) Predictability of seasonal atmospheric variations. J Clim 7:217–237CrossRef
    Charney JG, Shukla J (1981) Predictability of monsoons. In: Sir James Lighthill, Pearce (eds) Monsoon dynamics. Cambridge University Press, Cambridge, pp 99–109
    Chaudhari HS, Pokhrel S, Mohanty S, Saha SK (2013a) Seasonal prediction of Indian summer monsoon in NCEP coupled and uncoupled model. Theor Appl Climatol 114:459–477CrossRef
    Chaudhari HS, Pokhrel S, Saha SK, Dhakate A, Yadav RK, Salunke K, Mahapatra S, Sabeerali CT, Rao SA (2013b) Model biases in long coupled runs of NCEP CFS in the context of Indian summer monsoon. Int J Climatol 33:1057–1069. doi:10.​1002/​joc.​3489 CrossRef
    Chen D, Zebiak SE, Busalacchi AJ, Cane MA (1995) An improved procedure for El Ni ̃no forecasting: implications for predictability. Science 269:1699–1702CrossRef
    Chen M, Wang W, Kumar A (2010) Prediction of monthly-mean temperature: the roles of atmospheric and land initial conditions and sea surface temperature. J Clim 23:717–725. doi:10.​1175/​2009JCLI3090.​1 CrossRef
    Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectrosc Radiat Transf 91:233–244CrossRef
    Delsole T, Shukla J (2010) Model fidelity versus skill in seasonal forecasting. J Clim 23:4794–4806CrossRef
    Dirmeyer PA, Randal DK, Zhichang G (2006) Do global models properly represent the feedback between land and atmosphere? J Hydrometeorol 7:1177–1198CrossRef
    Drbohlav HKL, Krishnamurthy V (2010) Spatial structure, forecast errors, and predictability of the South Asian monsoon in CFS monthly retrospective forecasts. J Clim 23:4750–4769CrossRef
    Duan W, Wei C (2013) The ‘spring predictability barrier’ for ENSO predictions and its possible mechanism: results from a fully coupled model. Int J Climatol 33:1280–1292. doi:10.​1002/​joc.​3513 CrossRef
    Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarplay JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 1089(D22):8851. doi:10.​1029/​2002JD003296 CrossRef
    Flohn H (1968) Contributions to a meteorology of the Tibetan Highlands. Rept. no. 130, Colorado State University, Fort Collins
    Gadgil S, Rajeevan M, Nanjundiah R (2005) Monsoon prediction—why yet another failure? Curr Sci 88:1389–1400
    Goswami BN (1998) Interannual variations of Indian summer monsoon in a GCM: external conditions versus internal feedbacks. J Clim 11:501–522CrossRef
    Goswami BN, Xavier PK (2003) Potential predictability and extended range prediction of Indian summer monsoon breaks. Geophys Res Lett 30(18):1966. doi:10.​1029/​2003GL017,810 CrossRef
    Goswami BN, Krishnamurthy V, Aamalai H (1999) A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Q J R Meteorol Soc 125:611–633CrossRef
    Goswami BN, Ajaya Mohan RS, Xavier PK, Sengupta D (2003) Clustering of low pressure systems during the Indian summer monsoon by intraseasonal oscillations. Geophys Res Lett 30(8):1431. doi:10.​1029/​2002GL01673 CrossRef
    Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) A technical guide to MOM4. GFDL Ocean Group technical report 5, 337, GFDL
    Hong S-Y, Pan H-L (1998) Convective trigger function for a mass-flux cumulus parameterization scheme. Mon Weather Rev 126:2599–2620CrossRef
    Iacono MJ, Mlawer EJ, Clough SA, Morcrette JJ (2000) Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J Geophys Res 105:14873–14890CrossRef
    Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRef
    Kang IS, Shukla J (2005) Dynamical seasonal prediction and predictability of monsoon. In: Wang B (ed) The Asian monsoon. Praxis, Chichester
    Kang IS, Lee JY, Park CK (2004) Potential predictability of summer mean precipitation in a dynamical seasonal prediction system with systematic error correction. J Clim 17(4):834–844CrossRef
    Kleeman R (2002) Measuring dynamical prediction utility using relative entropy. J Atmos Sci 59:2057–2072CrossRef
    Krishnamurthy V, Shukla J (2011) Predictability of the Indian monsoon in coupled general circulation models. COLA technical report 313
    Krishnamurthy V, Shukla J (2012) Predictability of the Indian monsoon in coupled general circulation models. In: Tyagi A et al (eds) Monsoon monographs editor, vol II, chap 7. India Meteorological Department, New Delhi, pp 266–306
    Krishnamurti TN, Bhalme HN (1976) Oscillations of monsoon system. Part I. Observational aspect. J Atmos Sci 33:1937–1954CrossRef
    Krishnamurti TN, Kanamitsu M, Kiss WJ, Lee JD, Krueger AF, Winston JS (1973) Tropical east–west circulations during the northern winter. J Atoms Sci 30:780–787CrossRef
    Kumar A, Hoerling MP (1998) Specification of regional sea surface temperatures in atmospheric general circulation model simulations. J Geophys Res 103:8901–8907CrossRef
    Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141CrossRef
    Moore AM, Kleeman R (1997) The singular vectors of a coupled ocean-atmosphere model of ENSO, Part I: Thermodynamics, energetics and error growth. Q J R Meteorol Soc 123:953–981CrossRef
    Naidu CV, Krishna KM, Rao SR, Kumar OSRUB, Durgalakshmi K, Ramakrishna SSVS (2011) Variations of Indian summer monsoon rainfall induce the weakening of easterly jet stream in the warming environment? Glob Planet Change 33:1017–1032
    Parthasarathy B, Munot AA, Kothawale DR (1995) All India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49:217–224CrossRef
    Phelps MW, Kumar A, O’Brien JJ (2004) Potential predictability in the NCEP CPC dynamical seasonal forecast system. J Clim 17:3775–3785CrossRef
    Pokhrel S, Chaudhari HS, Saha SK, Dhakate A, Yadav RK, Salunke K, Mahapatra S, Rao SA (2012a) ENSO, IOD and Indian summer monsoon in NCEP Climate Forecast System. Clim Dyn 39:2143–2165. doi:10.​1007/​s00382-012-1349-5 CrossRef
    Pokhrel S, Rahaman H, Parekh A, Saha SK, Dhakate A, Chaudhari HS, Gairola RM (2012b) Evaporation-precipitation variability over Indian Ocean and its assessment in NCEP Climate Forecast System (CFSv2). Clim Dyn 39:2585–2608CrossRef
    Pokhrel S, Dhakate A, Chaudhari HS, Saha SK (2013) Status of NCEP CFS vis-a-vis IPCC AR4 models for the simulation of Indian summer monsoon. Theor Appl Climatol 111:65–78CrossRef
    Preethi B, Kripalani RH, Krishna Kumar K (2010) Indian summer monsoon rainfall variability in global coupled ocean-atmospheric models. Clim Dyn 35:1521–1539CrossRef
    Raghavan K (1973) Tibetan anticyclone and tropical easterly jet. Pure Appl Geophys PAGEOPH 110:2130–2142CrossRef
    Rajeevan M, Nanjundiah RS (2009) Coupled model simulations of twentieth century climate of the Indian summer monsoon. Curr Sci (Platinum jubilee special) 537–567
    Rajeevan M, Pai DS, Anil Kumar R, Lal B (2006a) New statistical models for long-range forecasting of southwest monsoon rainfall over India. Clim Dyn. doi:10.​1007/​s00382-006-019706
    Rajeevan M, Bhate J, Kale JD, Lal B (2006b) High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306
    Rajeevan M, Unnikrishnan CK, Preethi B (2012) Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability. Clim Dyn 38:2257–2274CrossRef
    Rasmusson EM, Carpenter TH (1983) The relationship between eastern equatorial Pacific sea surface temperature and rainfall over India and Sri Lanka. Mon Weather Rev 111:517–528CrossRef
    Reichler T, Roads J (2005) Long range predictability in the tropics. Part II: 30–60 day variability. J Clim 18:634–650CrossRef
    Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRef
    Saha K (1970) Zonal anomaly of sea surface temperature in equatorial Indian Ocean and its possible effect upon monsoon circulation. Tellus 22(4):403–409CrossRef
    Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang HY, Juang H-MH, Sela J, Iredell M, Treadon R, Kleist D, Delst PV, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, Dool HVD, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP Climate Forecast System reanalysis. Bull Am Meteorol Soc 91:1015–1057CrossRef
    Saha SK, Halder S, Krishna Kumar K, Goswami BN (2011) Pre-onset land surface processes and internal interannual variabilities of the Indian summer monsoon. Clim Dyn 36:2077–2089CrossRef
    Saha SK, Halder S, Suryachandra A, Goswami BN (2012) Modulation of ISOs by land-atmosphere feedback and contribution to the interannual variability of Indian summer monsoon. J Geophys Res 117(D13101):1–14. doi:10.​1029/​2011JD017291
    Saha SK, Pokhrel S, Chaudhari HS (2013) Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 free run. Clim Dyn 41:1801–1815. doi:10.​1007/​s00382-012-1617-4 CrossRef
    Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H-Y, Iredell M, Ek M, Meng J, Yang R, Mendez M, van den Dool H, Zhang Q, Wang W, Chen M, Becker E (2014a) The NCEP Climate Forecast System version 2. J Clim 27:2185–2208. doi:10.​1175/​JCLI-D-12-00823.​1 CrossRef
    Saha SK, Pokhrel S, Chaudhari HS, Dhakate A, Shewale S, Sabeerali CT, Salunke K, Hazra A, Mahaptra S, Rao AS (2014b) Improved simulation of Indian summer monsoon in latest NCEP Climate Forecast System free run. Int J Climatol 34:1628–1641. doi:10.​1002/​joc.​3791 CrossRef
    Saha SK, Pokhrel S, Salunke K, Dhakate A, Chaudhari HS, Rahaman H, Krishna S, Hazra A, Sikka DR (2015) Potential predictability of Indian summer monsoon rainfall in NCEP CFSv2. J Adv Model Earth Syst (under review)
    Sahai AK, Sharmila S, Abhilash S, Chattopadhyay R, Borah N, Krishna RPM, Joseph S, Roxy M, De S, Pattnaik S, Pillai P (2013) Simulation and extended range prediction of monsoon intraseasonal oscillations in NCEP CFS/GFS version 2 framework. Curr Sci 104(10):1394–1408
    Samelson RG, Tziperman E (2001) Instability of the chaotic ENSO: the growth-phase predictability barrier. Journal of Atmospheric Sciences 58:3613–3625CrossRef
    Schott FA, Xie SP, McCreary JP (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:1–46CrossRef
    Seo KH, Schemm JKE, Wang W, Kumar A (2007) The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System: the effect of sea surface temperature. Mon Weather Rev 135:1807–1827CrossRef
    Shinoda T, Hendon HH, Alexander MA (2004) Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res 51:619–635CrossRef
    Shukla J (1975) Effect of Arabian Sea-surface temperature anomaly on Indian Summer monsoon: a numerical experiment with the GFDL model. J Atmos Sci 32:503–511CrossRef
    Shukla J (1987) Interannual variability of monsoons. In: Fein JS, Stephens PL (eds) Monsoons. Wiley, London, pp 399–464
    Shukla J (1998) Predictability in the midst of chaos: a scientific basis for climate forecasting. Science 282:728–731CrossRef
    Shukla J, Wallace JM (1983) Numerical simulation of the atmospheric response to equatorial Pacific sea surface temperature anomalies. J Atmos Sci 40:1613–1630CrossRef
    Sikka DR (1980) Some aspects of the large-scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. Proc Ind Acad Sci (Earth Planet Sci) 89:179–195
    Singh A, Acharya N, Mohanty UC, Robertson AW, Mishra G (2012) On the predictability of Indian summer monsoon rainfall in general circulation model at different lead time. Dyn Atmos Oceans 58:108–127CrossRef
    Slingo J, Palmer TN (2011) Uncertainty in weather and climate prediction. Philos Trans R Soc A 369:4751–4767CrossRef
    Soman MK, Slingo J (1997) Sensitivity of the Asian summer monsoon to aspects of sea-surface-temperature anomalies in the tropical Pacific Ocean. Q J R Meteorol Soc 123:309–336CrossRef
    Sperber KR, Palmer TN (1996) Interannual tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project. J Clim 9:2727–2750CrossRef
    Sun B, Wang H (2013) Larger variability, better predictability? Int J Climatol 33:2341–2351CrossRef
    Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192CrossRef
    Turner AG, Inness PM, Slingo JM (2005) The role of the basic state in the ENSO–monsoon relationship and implications for predictability. Q J R Meteorol Soc 131:781–804CrossRef
    van den Dool HM, Peng P, Johansson A, Chelliah M, Shabbar A, Saha S (2006) Seasonal-to-decadal predictability and prediction of North American climate—the Atlantic influence. J Clim 19:6005–6024CrossRef
    Walker GT (1924) Correlation in seasonal variations of weather, IX, A further study of world weather. Mem Indian Meteorol Dept 24(9):275–332
    Wang B, Ding Q, Fu X, Kang IS, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32:L15711. doi:10.​1029/​2005GL022734 CrossRef
    Webster PJ (1995) The annual cycle and the predictability of the tropical coupled ocean–atmosphere system. Meteorol Atmos Phys 56:33–55CrossRef
    Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926CrossRef
    Winton M (2000) A reformulated three-layer sea ice model. J Atmos Ocean Technol 17:525–531CrossRef
    Wu X, Simmonds I, Budd WF (1997) Modeling of Antarctic sea ice in a general circulation model. J Clim 10:593–609CrossRef
    Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteorol Soc 78:2539–2558CrossRef
    Xue Y, Cane MA, Zebiak SE, Blumenthal MB (1994) On the prediction of ENSO: a study with a low order Markov model. Tellus 46A:512–528CrossRef
    Yanai M, Wu GX (2005) Effects of the Tibetan Plateau. In: Wang B (ed) The Asian monsoon. Praxis, Chichester
    Yoo H, Li Z, Yu-Tai H, Lord S, Weng F, Barker HW (2013) Diagnosis and testing of low-level cloud parameterizations for the NCEP/GFS model using satellite and ground-based measurements. Clim Dyn 41:1595–1613. doi:10.​1007/​s00382-013-1884-8 CrossRef
    Zheng Y, Shinoda T, Lin J-L, Kiladis GN (2011) Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19 IPCC AR4 coupled general circulation models. J Clim 24:4139–4164CrossRef
  • 作者单位:Samir Pokhrel (1)
    Subodh Kumar Saha (1)
    Ashish Dhakate (1)
    Hasibur Rahman (2)
    Hemantkumar S. Chaudhari (1)
    Kiran Salunke (1)
    Anupam Hazra (1)
    K. Sujith (1)
    D. R. Sikka (1)

    1. Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
    2. Indian National Centre for Ocean Information Services, Hyderabad, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
A detailed analysis of sensitivity to the initial condition for the simulation of the Indian summer monsoon using retrospective forecast by the latest version of the Climate Forecast System version-2 (CFSv2) is carried out. This study primarily focuses on the tropical region of Indian and Pacific Ocean basin, with special emphasis on the Indian land region. The simulated seasonal mean and the inter-annual standard deviations of rainfall, upper and lower level atmospheric circulations and Sea Surface Temperature (SST) tend to be more skillful as the lead forecast time decreases (5 month lead to 0 month lead time i.e. L5–L0). In general spatial correlation (bias) increases (decreases) as forecast lead time decreases. This is further substantiated by their averaged value over the selected study regions over the Indian and Pacific Ocean basins. The tendency of increase (decrease) of model bias with increasing (decreasing) forecast lead time also indicates the dynamical drift of the model. Large scale lower level circulation (850 hPa) shows enhancement of anomalous westerlies (easterlies) over the tropical region of the Indian Ocean (Western Pacific Ocean), which indicates the enhancement of model error with the decrease in lead time. At the upper level circulation (200 hPa) biases in both tropical easterly jet and subtropical westerlies jet tend to decrease as the lead time decreases. Despite enhancement of the prediction skill, mean SST bias seems to be insensitive to the initialization. All these biases are significant and together they make CFSv2 vulnerable to seasonal uncertainties in all the lead times. Overall the zeroth lead (L0) seems to have the best skill, however, in case of Indian summer monsoon rainfall (ISMR), the 3 month lead forecast time (L3) has the maximum ISMR prediction skill. This is valid using different independent datasets, wherein these maximum skill scores are 0.64, 0.42 and 0.57 with respect to the Global Precipitation Climatology Project, CPC Merged Analysis of Precipitation and the India Meteorological Department precipitation dataset respectively for L3. Despite significant El-Niño Southern Oscillation (ENSO) spring predictability barrier at L3, the ISMR skill score is highest at L3. Further, large scale zonal wind shear (Webster–Yang index) and SST over Niño3.4 region is best at L1 and L0. This implies that predictability aspect of ISMR is controlled by factors other than ENSO and Indian Ocean Dipole. Also, the model error (forecast error) outruns the error acquired by the inadequacies in the initial conditions (predictability error). Thus model deficiency is having more serious consequences as compared to the initial condition error for the seasonal forecast. All the model parameters show the increase in the predictability error as the lead decreases over the equatorial eastern Pacific basin and peaks at L2, then it further decreases. The dynamical consistency of both the forecast and the predictability error among all the variables indicates that these biases are purely systematic in nature and improvement of the physical processes in the CFSv2 may enhance the overall predictability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700