Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience
详细信息    查看全文
  • 作者:Peter Ashwin ; Stephen Coombes ; Rachel Nicks
  • 关键词:Central pattern generator ; Chimera state ; Coupled oscillator network ; Groupoid formalism ; Heteroclinic cycle ; Isochrons ; Master stability function ; Network motif ; Perceptual rivalry ; Phase oscillator ; Phase–amplitude coordinates ; Stochastic oscillator ; Strongly coupled integrate ; and ; fire network ; Symmetric dynamics ; Weakly coupled phase oscillator network ; Winfree model
  • 刊名:The Journal of Mathematical Neuroscience (JMN)
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:6
  • 期:1
  • 全文大小:2,943 KB
  • 参考文献:1. Huygens C. Oeuvres complétes de Christiaan Huygens. La Haye: Martinus Nijhoff; 1888. doi:10.​5962/​bhl.​title.​21031 .
    2. Rayleigh JWSB. The theory of sound. Vol. 2. London: Macmillan; 1896. MATH
    3. Van Der Pol B. Forced oscillations in a circuit with non-linear resistance. Lond Edinb Dublin Philos Mag J Sci, Ser 7. 1927;3:65–80.
    4. Wiener N. Cybernetics; or control and communication in the animal and the machine; 1948.
    5. Kuramoto Y. Chemical oscillations, waves and turbulence. Heidelberg: Springer; 1984. MATH CrossRef
    6. Michaels DC, Matyas EP, Jalife J. Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis. Circ Res. 1987;61:704–14. CrossRef
    7. Liu C, Weaver DR, Strogatz SH, Reppert SM. Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell. 1997;91:855–60. CrossRef
    8. Ermentrout GB. An adaptive model for synchrony in the firefly Pteroptyx malaccae. J Math Biol. 1991;29:571–85. MathSciNet MATH CrossRef
    9. Wiesenfeld K, Colet P, Strogatz SH. Frequency locking in Josephson arrays: connection with the Kuramoto model. Phys Rev E. 1998;57:1563–9. CrossRef
    10. Néda Z, Ravasz E, Vicsek T, Brechet Y, Barabási A-L. Physics of the rhythmic applause. Phys Rev E. 2000;61:6987–92.
    11. Ha SY, Jeong E, Kang MJ. Emergent behaviour of a generalized Viscek-type flocking model. Nonlinearity. 2010;23:3139–56. MathSciNet MATH CrossRef
    12. Paley DA, Leonard NE, Sepulchre R, Grunbaum D, Parrish JK. Oscillator models and collective motion. IEEE Control Syst Mag. 2007;27:89–105. CrossRef
    13. Assenza S, Gutiérrez R, Gómez-Gardenes J, Latora V, Boccaletti S. Emergence of structural patterns out of synchronization in networks with competitive interactions. Sci Rep. 2011;1:99. CrossRef
    14. Dörfler F, Bullo F. Synchronization in complex networks of phase oscillators: a survey. Automatica. 2014;50:1539–64. MATH CrossRef
    15. Velazquez JLP. Brain research: a perspective from the coupled oscillators field. NeuroQuantology. 2006;4:55–165.
    16. Singer W. Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol. 1993;55:349–74. CrossRef
    17. Uhlhaas PJ, Pipa G, Lima B, Melloni L, Neuenschwander S, Nikolic D, Lin S-C. Neural synchrony in cortical networks: history, concept and current status. Neuroscience. 2009;3:1–19.
    18. Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev. 2010;90:1195–268. CrossRef
    19. Fell J, Axmacher N. The role of phase synchronization in memory processes. Nat Rev Neurosci. 2011;12:105–18. CrossRef
    20. Wehr M, Laurent G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature. 1996;384:162–6. CrossRef
    21. Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Volkovskii A, Abarbanel HD. Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci. 2001;24:263–97. CrossRef
    22. Buzśaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9. CrossRef
    23. Haken H, Kelso JAS, Bunz H. A theoretical model of phase transitions in human hand movements. Biol Cybern. 1985;51:347–56. MathSciNet MATH CrossRef
    24. Kelso JAS. Dynamic patterns: the self-organization of brain and behaviour. Cambridge: MIT Press; 1995.
    25. Stein PSG, Grillner S, Selverston AI, Stuart DG, editors. Neurons, networks and motor behavior. Cambridge: MIT Press; 1999.
    26. Milton J, Jung P, editors. Epilepsy as a dynamic disease. Berlin: Springer; 2003. MATH
    27. Coombes S, Terry JR. The dynamics of neurological disease: integrating computational, experimental and clinical neuroscience. Eur J Neurosci. 2012;36:2118–20. CrossRef
    28. Titcombe MS, Edwards R, Beuter A. Mathematical modelling of Parkinsonian tremor. Nonlinear Stud. 2004;11(3):363–84. MathSciNet MATH
    29. Bressler SL. Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharmacology. 2003;28:35–9. CrossRef
    30. Tass PA. Phase resetting in medicine and biology: stochastic modelling and data analysis. Berlin: Springer; 1999. MATH CrossRef
    31. Tass PA, Hauptmann C, Popovych OV. Development of therapeutic brain stimulation techniques with methods from nonlinear dynamics and statistical physics. Int J Bifurc Chaos. 2006;16:1889–911. MathSciNet MATH CrossRef
    32. Rao RPN. Brain–computer interfacing: an introduction. Cambridge: Cambridge University Press; 2013. CrossRef
    33. Coombes S, Bressloff PC, editors. Bursting: the genesis of rhythm in the nervous system. Singapore: World Scientific; 2005.
    34. Rinzel J, Huguet G. Nonlinear dynamics of neuronal excitability, oscillations, and coincidence detection. Commun Pure Appl Math. 2013;66:1464–94. MathSciNet MATH CrossRef
    35. Kuehn C. Multiple time scale dynamics. Cham: Springer; 2015. MATH CrossRef
    36. Fitzhugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J. 1961;1:445–66. CrossRef
    37. Coombes S, Osbaldestin AH. Period adding bifurcations and chaos in a periodically stimulated excitable neural relaxation oscillator. Phys Rev E. 2000;62:4057–66. CrossRef
    38. Berger H. Über das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkrankh. 1929;87:527–70. CrossRef
    39. Voss L, Sleigh J. Monitoring consciousness: the current status of EEG-based depth of anaesthesia monitors. Best Pract Res Clin Anaesthesiol. 2007;21:313–25. CrossRef
    40. Sherman M, Guillery RW. Functional connections of cortical areas: a new view from the thalamus. Cambridge: MIT Press; 2013. CrossRef
    41. Wright JJ, Liley DTJ. Dynamics of the brain at global and microscopic scales: neural networks and the EEG. Behav Brain Sci. 1996;19:285–320. CrossRef
    42. David O, Friston KJ. A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage. 2003;20:1743–55. CrossRef
    43. Hoppensteadt FC, Izhikevich EM. Weakly connected neural networks. New York: Springer; 1997. CrossRef
    44. Fenichel N. Persistence and smoothness of invariant manifolds for flows. Indiana Univ Math J. 1971;21:193–226. MathSciNet MATH CrossRef
    45. Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer; 1990. (Applied mathematical sciences; vol. 42).
    46. Kopell N. Toward a theory of modelling central pattern generators. In: Neural control of rhythmic movements in vertebrates. New York: Wiley; 1988.
    47. Cabral J, Hugues E, Sporns O, Deco G. Role of local network oscillations in resting-state functional connectivity. NeuroImage. 2011;57:130–9. CrossRef
    48. Izhikevich E. Dynamical systems in neuroscience: the geometry of excitability and bursting. Cambridge: MIT Press; 2006.
    49. Ermentrout GB, Terman DH. Mathematical foundations of neuroscience. New York: Springer; 2010. MATH CrossRef
    50. Hodgkin AL, Huxley AF. A quantitative description of membrane and its application to conduction and excitation in nerve. J Physiol. 1952;117:500–44. CrossRef
    51. Rinzel J. Electrical excitability of cells, theory and experiment: review of the Hodgkin–Huxley foundation and an update. Bull Math Biol. 1990;52:3–23. CrossRef
    52. Abbott LF, Kepler TB. Model neurons: from Hodgkin–Huxley to Hopfield. In: Garrido L, editor. Statistical mechanics of neural networks. Berlin: Springer; 1990. p. 5–18. (Lecture notes in physics; vol. 368). CrossRef
    53. Wilson HR. Simplified dynamics of human and mammalian neocortical neurons. J Theor Biol. 1999;200:375–88. CrossRef
    54. Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys J. 1981;35:193–213. CrossRef
    55. Badel L, Lefort S, Berger TK, Petersen CCH, Gerstner W, Richardson MJE. Extracting nonlinear integrate-and-fire models from experimental data using dynamic I–V curves. Biol Cybern. 2008;99:361–70. MathSciNet MATH CrossRef
    56. Latham PE, Richmond BJ, Nelson PG, Nirenberg S. Intrinsic dynamics in neuronal networks I. Theory. J Neurophysiol. 2000;83:808–27.
    57. Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw. 2003;14:1569–72. CrossRef
    58. Coombes S, Thul R, Wedgwood KCA. Nonsmooth dynamics in spiking neuron models. Physica D. 2012;241:2042–57. MathSciNet CrossRef
    59. Brown TG. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression and a theory of the evolution of function in the nervous system. J Physiol (Lond). 1914;48:18–46. CrossRef
    60. Connors BW, editor. Gap junctions in the mammalian brain. Boca Raton: CRC Press; 2005.
    61. Torben-Nielsen B, Segev I, Yarom Y. The generation of phase differences and frequency changes in a network model of inferior olive subthreshold oscillations. PLoS Comput Biol. 2012;8:1002580. CrossRef
    62. Liley DTJ, Cadusch PJ, Dafilis MP. A spatially continuous mean field theory of electrocortical activity. Netw Comput Neural Syst. 2002;13:67–113. MATH CrossRef
    63. Deco G, Jirsa VK, McIntosh AR. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat Rev Neurosci. 2011;12:43–56. CrossRef
    64. Young CK, Eggermont JJ. Coupling of mesoscopic brain oscillations: recent advances in analytical and theoretical perspectives. Prog Neurobiol. 2009;89:61–78. CrossRef
    65. Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972;12:1–24. CrossRef
    66. Jansen BH, Rit VG. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern. 1995;73:357–66. MATH CrossRef
    67. Touboul J, Wendling F, Chauvel P, Faugeras O. Neural mass activity, bifurcations, and epilepsy. Neural Comput. 2011;23:3232–86. MathSciNet CrossRef
    68. Jedynak M, Pons AJ, Garcia-Ojalvo J. Cross-frequency transfer in a stochastically driven mesoscopic neuronal model. Front Comput Neurosci. 2015;9:14. CrossRef
    69. Spiegler A, Knösche TR, Schwab K, Haueisen J, Atay FM. Modeling brain resonance phenomena using a neural mass model. PLoS Comput Biol. 2011;7(12):1002298. CrossRef
    70. Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, Robinson PA. A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex. 2006;16:1296–313. CrossRef
    71. Terry JR, Benjamin O, Richardson MP. Seizure generation: the role of nodes and networks. Epilepsia. 2012;53(9):166–9. CrossRef
    72. Chowdhury FA, Woldman W, FitzGerald TH, Elwes RD, Nashef L, Terry JR, Richardson MP. Revealing a brain network endophenotype in families with idiopathic generalised epilepsy. PLoS ONE. 2014;9:110136. CrossRef
    73. Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina Y, Aleman-Gomez Y, Bosch-Bayard J, Carbonell F, Ozaki T. Model driven EEG/fMRI fusion of brain oscillations. Hum Brain Mapp. 2009;30:2701–21. CrossRef
    74. Gençay R, Liu T. Nonlinear modelling and prediction with feedforward and recurrent networks. Physica D. 1997;108:119–34. CrossRef
    75. Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C. Synchronization in complex networks. Phys Rep. 2008;469:93–153. MathSciNet CrossRef
    76. Pikovsky A, Rosenblum M, Kurths J. Synchronization. Cambridge: Cambridge University Press; 2001. (Cambridge nonlinear science series; vol. 12). MATH CrossRef
    77. Brette R. Computing with neural synchrony. PLoS Comput Biol. 2012;8:1002561. CrossRef
    78. Brunel N, Hakim V. Sparsely synchronized neuronal oscillations. Chaos. 2008;18:015113. MathSciNet CrossRef
    79. Casagrande V, Mikhailov A. Birhythmicity, synchronization, and turbulence in an oscillatory system with nonlocal inertial coupling. Physica D. 2005;205:154–69. MATH CrossRef
    80. Deville REL, Peskin CS. Synchrony and asynchrony for neuronal dynamics defined on complex networks. Bull Math Biol. 2012;74:769–802. MathSciNet MATH CrossRef
    81. Nowotny T, Huerta R, Rabinovich MI. Neuronal synchrony: peculiarity and generality. Chaos. 2008;18:037119. MathSciNet CrossRef
    82. Parga N, Abbott LF. Network model of spontaneous activity exhibiting synchronous transitions between up and down states. Front Neurosci. 2007;1:57–66. CrossRef
    83. Pinsky PF, Rinzel J. Synchrony measures for biological neural networks. Biol Cybern. 1995;137:129–37. CrossRef
    84. Popovych OV, Hauptmann C, Tass P. Control of neuronal synchrony by nonlinear delayed feedback. Biol Cybern. 2006;95:69–85. MathSciNet MATH CrossRef
    85. Rubin J, Terman D. Synchronized activity and loss of synchrony among heterogeneous conditional oscillators. SIAM J Appl Dyn Syst. 2002;1:146–74. MathSciNet MATH CrossRef
    86. Sorrentino F, Ott E. Network synchronization of groups. Phys Rev E. 2007;76:056114. MathSciNet CrossRef
    87. Reyes AD. Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat Neurosci. 2003;6:593–9. CrossRef
    88. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U. Complex networks: structure and dynamics. Phys Rep. 2006;424:175–308. MathSciNet CrossRef
    89. Nekorkin VI, Voronin ML, Velarde MG. Clusters in an assembly of globally coupled bistable oscillators. Eur Phys J B. 1999;9:533–43. CrossRef
    90. Newman MEJ. Networks: an introduction. Oxford: Oxford University Press; 2010. CrossRef
    91. Do A-L, Gross T. Self-organization in continuous adaptive networks. Copenhagen: River; 2012.
    92. Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15:683–95. CrossRef
    93. Atay FM, Biyikoglu T, Jost J. Network synchronization: spectral versus statistical properties. Physica D. 2006;224:35–41. MathSciNet MATH
    94. Pecora L, Carroll T, Johnson G, Mar D, Fink KS. Synchronization stability in coupled oscillator arrays: solution for arbitrary configurations. Int J Bifurc Chaos. 2000;10:273–90. MathSciNet MATH CrossRef
    95. Pecora L, Barahona M. Synchronization of oscillators in complex networks. Chaos Complex Lett. 2005;1:61–91. MATH
    96. Rothkegel A, Lehnertz K. Recurrent events of synchrony in complex networks of pulse-coupled oscillators. Europhys Lett. 2011;95:38001. CrossRef
    97. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002;298:824–7. CrossRef
    98. Sporns O, Kötter R. Motifs in brain networks. PLoS Biol. 2004;2:369. CrossRef
    99. Sporns O, Honey CJ, Kötter R. Identification and classification of hubs in brain networks. PLoS ONE. 2007;2(10):1049. CrossRef
    100. Kamei H. The existence and classification of synchrony
    eaking bifurcations in regular homogeneous networks using lattice structures. Int J Bifurc Chaos. 2009;19:3707–32. MathSciNet MATH CrossRef
    101. Benjamin O, Fitzgerald THB, Ashwin P, Tsaneva-Atanasova K, Chowdhury F, Richardson MP, Terry JR. A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy. J Math Neurosci. 2012;2:1. MathSciNet MATH CrossRef
    102. Ermentrout GB, Kopell N. Oscillator death in systems of coupled neural oscillators. SIAM J Appl Math. 1990;50:125–46. MathSciNet MATH CrossRef
    103. Ashwin P, Dangelmayr G. Isochronicity-induced bifurcations in systems of weakly dissipative coupled oscillators. Dyn Stab Syst. 2000;15:263–86. MathSciNet MATH CrossRef
    104. Sepulchre J-A, MacKay RS. Localized oscillations in conservative or dissipative networks of weakly coupled autonomous oscillators. Nonlinearity. 1997;10:679–713. MathSciNet MATH CrossRef
    105. Campbell SA. Time delays in neural systems. In: Handbook of brain connectivity. Berlin: Springer; 2007. (Understanding complex systems).
    106. Hoevel P, Dahlem MA, Schoell E. Control of synchronization in coupled neural systems by time-delayed feedback. Int J Bifurc Chaos. 2010;20:813–5. MATH CrossRef
    107. Dhamala M, Jirsa V, Ding M. Enhancement of neural synchrony by time delay. Phys Rev Lett. 2004;92:074104. CrossRef
    108. Levnajić Z, Pikovsky A. Phase resetting of collective rhythm in ensembles of oscillators. Phys Rev E. 2010;82:056202.
    109. Atay FM. Complex time-delay systems. Berlin: Springer; 2010. (Understanding complex systems). MATH CrossRef
    110. Engelborghs K, Luzyanina T, Roose D. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans Math Softw. 2002;28:1–21. MathSciNet MATH CrossRef
    111. Sieber J, Engelborghs K, Luzyanina T, Samaey G, Roose D. DDE-BIFTOOL manual—bifurcation analysis of delay differential equations. arXiv:​1406.​7144 (2014).
    112. Coombes S, Laing C. Delays in activity-based neural networks. Philos Trans R Soc A. 2009;367:1117–29. MathSciNet MATH CrossRef
    113. MacArthur BD, Sanchez-Garcia RJ, Anderson JW. Symmetry in complex networks. Discrete Appl Math. 2008;156:3525–31. MathSciNet MATH CrossRef
    114. Golubitsky M, Schaeffer DG. Singularities and groups in bifurcation theory. Vol. I. New York: Springer; 1985. (Applied mathematical sciences; vol. 51). CrossRef
    115. Golubitsky M, Stewart I, Schaeffer DG. Singularities and groups in bifurcation theory. Vol. II. New York: Springer; 1988. (Applied mathematical sciences; vol. 69). CrossRef
    116. Golubitsky M, Stewart I. The symmetry perspective: from equilibrium to chaos in phase space and physical space. Basel: Birkhäuser Verlag; 2002. (Progress in mathematics; vol. 200). CrossRef
    117. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC. What geometric visual hallucinations tell us about the visual cortex. Neural Comput. 2002;14(3):473–91. MATH CrossRef
    118. Ashwin P, Swift JW. The dynamics of n weakly coupled identical oscillators. J Nonlinear Sci. 1992;2:69–108. MathSciNet MATH CrossRef
    119. Bressloff PC, Coombes S. Symmetry and phase-locking in a ring of pulse-coupled oscillators with distributed delays. Physica D. 1999;126:99–122. MathSciNet MATH CrossRef
    120. Brown E, Holmes P, Moehlis J. Globally coupled oscillator networks. In: Kaplan E, Marsden J, Sreenivasan K, editors. Perspectives and problems in nonlinear science: a celebratory volume in honor of Larry Sirovich. New York: Springer; 2003. p. 183–215. CrossRef
    121. Othmer HG, Scriven LE. Instability and dynamic pattern in cellular networks. J Theor Biol. 1971;32:507–37. CrossRef
    122. Dionne B, Golubitsky M, Stewart I. Coupled cells with internal symmetry. I. Wreath products. Nonlinearity. 1996;9:559–74. MathSciNet MATH CrossRef
    123. Kuznetsov YA. Elements of applied bifurcation theory. 2nd ed. New York: Springer; 1998. (Applied mathematical sciences; vol. 112). MATH
    124. Krauskopf B, Osinga HM, Galan-Vioque J, editors. Numerical continuation methods for dynamical systems path following and boundary value problems. Heidelberg: Springer; 2007. MATH
    125. Dhooge A, Govaerts W, Kuznetsov YA. MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans Math Softw. 2003;29:141–64. MathSciNet MATH CrossRef
    126. Kuznetsov YA, Levitin VV, Skovoroda AR. Continuation of stationary solutions to evolution problems in CONTENT. Amsterdam, The Netherlands: Centrum voor Wiskunde en Informatica; 1996. Report No.: AM-R9611.
    127. Ermentrout GB. Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Philadelphia: SIAM; 2002. CrossRef
    128. Krupa M. Robust heteroclinic cycles. J Nonlinear Sci. 1997;7:129–76. MathSciNet MATH CrossRef
    129. Krupa M, Melbourne I. Asymptotic stability of heteroclinic cycles in systems with symmetry. II. Proc R Soc Edinb, Sect A. 2004;134:1177–97. MathSciNet MATH CrossRef
    130. Ashwin P, Field M. Heteroclinic networks in coupled cell systems. Arch Ration Mech Anal. 1999;148:107–43. MathSciNet MATH CrossRef
    131. Dellnitz M, Field M, Golubitsky M, Ma J, Hohmann A. Cycling chaos. Int J Bifurc Chaos. 1995;5:1243–7. MathSciNet MATH CrossRef
    132. Ashwin P, Rucklidge AM. Cycling chaos: its creation, persistence and loss of stability in a model of nonlinear magnetoconvection. Physica D. 1998;122:134–54. MathSciNet MATH CrossRef
    133. Rabinovich M, Varona P, Selverston A, Abarbanel H. Dynamical principles in neuroscience. Rev Mod Phys. 2006;78:1213–65. CrossRef
    134. Rabinovich MI, Varona P, Tristan I, Afraimovich VS. Chunking dynamics: heteroclinics in mind. Front Comput Neurosci. 2014;8:22. CrossRef
    135. Stewart I, Golubitsky M, Pivato M. Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J Appl Dyn Syst. 2003;2:609–46. MathSciNet MATH CrossRef
    136. Golubitsky M, Stewart I. Nonlinear dynamics of networks: the groupoid formalism. Bull Am Math Soc. 2006;43:305–64. MathSciNet MATH CrossRef
    137. Aguiar M, Ashwin P, Dias A, Field M. Dynamics of coupled cell networks: synchrony, heteroclinic cycles and inflation. J Nonlinear Sci. 2011;21:271–323. MathSciNet MATH CrossRef
    138. Aguiara MAD, Dias APS, Golubitsky M, Leitee MD-CA. Bifurcations from regular quotient networks: a first insight. Physica D. 2009;238:137–55. MathSciNet CrossRef
    139. Dias APS, Pinho EM. Spatially periodic patterns of synchrony in lattice networks. SIAM J Appl Dyn Syst. 2009;8:641–75. MathSciNet MATH CrossRef
    140. Stewart I, Parker M. Periodic dynamics of coupled cell networks I: rigid patterns of synchrony and phase relations. Dyn Syst. 2007;22:389–450. MathSciNet MATH CrossRef
    141. Golubitsky M, Romano D, Wang Y. Network periodic solutions: patterns of phase-shift synchrony. Nonlinearity. 2012;25:1045–74. MathSciNet MATH CrossRef
    142. Field MJ. Combinatorial dynamics. Dyn Syst. 2004;19:217–43. MathSciNet MATH CrossRef
    143. Agarwal N, Field MJ. Dynamical equivalence of network architecture for coupled dynamical systems I: asymmetric inputs. Nonlinearity. 2010;23:1245–68. MathSciNet MATH CrossRef
    144. Agarwal N, Field MJ. Dynamical equivalence of network architecture for coupled dynamical systems II: general case. Nonlinearity. 2010;23:1269–89. MathSciNet MATH CrossRef
    145. Holmes P, Rand D. Phase portraits and bifurcations of the non-linear oscillator \(\ddot{x}+(\alpha+\gamma x^{2})\dot{x}+\beta x+\delta x^{3}=0\) . Int J Non-Linear Mech. 1980;15:449–58. MathSciNet MATH CrossRef
    146. Coombes S. Phase locking in networks of synaptically coupled McKean relaxation oscillators. Physica D. 2001;160:173–88. MathSciNet MATH CrossRef
    147. Coombes S. Neuronal networks with gap junctions: a study of piece-wise linear planar neuron models. SIAM J Appl Dyn Syst. 2008;7:1101–29. MathSciNet MATH CrossRef
    148. Storti DW, Rand RH. Dynamics of two strongly coupled relaxation oscillators. SIAM J Appl Math. 1986;46:56–67. MathSciNet MATH CrossRef
    149. Somers D, Kopell N. Waves and synchrony in networks of oscillators of relaxation and non-relaxation type. Physica D. 1995;89:169–83. MathSciNet MATH CrossRef
    150. Aronson DG, Ermentrout GB, Kopell N. Amplitude response of coupled oscillators. Physica D. 1990;41:403–49. MathSciNet MATH CrossRef
    151. Kurrer C. Synchronization and desynchronization of weakly coupled oscillators. Phys Rev E. 1997;56:3799–802. MathSciNet CrossRef
    152. Sherman A, Rinzel J. Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc Natl Acad Sci USA. 1992;89:2471–4. CrossRef
    153. Han SK, Kurrer C, Kuramoto Y. Dephasing and bursting in coupled neural oscillators. Phys Rev Lett. 1995;75:3190–3. CrossRef
    154. Postnov D, Han SK, Kook H. Synchronization of diffusively coupled oscillators near the homoclinic bifurcation. Phys Rev E. 1999;60:2799–807. MathSciNet CrossRef
    155. Pfeuty B, Mato G, Golomb D, Hansel D. Electrical synapses and synchrony: the role of intrinsic currents. J Neurosci. 2003;23:6280–94.
    156. Ermentrout B. Gap junctions destroy persistent states in excitatory networks. Phys Rev E. 2006;74:031918. MathSciNet CrossRef
    157. Daido H, Nakanishi K. Diffusion-induced inhomogeneity in globally coupled oscillators: swing-by mechanism. Phys Rev Lett. 2006;96:054101. CrossRef
    158. Mancilla JG, Lewis TJ, Pinto DJ, Rinzel J, Connors BW. Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex. J Neurosci. 2007;27:2058–73. CrossRef
    159. Pecora LM, Carroll TL. Master stability functions for synchronized coupled systems. Phys Rev Lett. 1998;80:2109–12. CrossRef
    160. Restrepo J, Ott E, Hunt B. Desynchronization waves and localized instabilities in oscillator arrays. Phys Rev Lett. 2004;93:114101. CrossRef
    161. Porter MA, Gleeson JP. Dynamical systems on networks: a tutorial. arXiv:​1403.​7663 (2014).
    162. Thul R, Coombes S. Understanding cardiac alternans: a piecewise linear modelling framework. Chaos. 2010;20:045102. MathSciNet CrossRef
    163. Pecora LM, Sorrentino F, Hagerstrom AM, Murphy TE, Roy R. Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat Commun. 2014;5:4079. CrossRef
    164. Mirollo RE, Strogatz SH. Synchronization of pulse-coupled biological oscillators. SIAM J Appl Math. 1990;50:1645–62. MathSciNet MATH CrossRef
    165. Ernst U, Pawelzik K, Geisel T. Synchronization induced by temporal delays in pulse-coupled oscillators. Phys Rev Lett. 1995;74:1570–3. CrossRef
    166. Ernst U, Pawelzik K, Geisel T. Delay-induced multistable synchronization of biological oscillators. Phys Rev E. 1998;57:2150–62. MathSciNet CrossRef
    167. Timme M, Wolf F, Geisel T. Unstable attractors induce perpetual synchronization and desynchronization. Chaos. 2003;13:377–87. MathSciNet MATH CrossRef
    168. Ashwin P, Timme M. Unstable attractors: existence and robustness in networks of oscillators with delayed pulse coupling. Nonlinearity. 2005;18:2035–60. MathSciNet MATH CrossRef
    169. Broer H, Efstathiou K, Subramanian E. Heteroclinic cycles between unstable attractors. Nonlinearity. 2008;21:1385–410. MathSciNet MATH CrossRef
    170. Kirst C, Timme M. From networks of unstable attractors to heteroclinic switching. Phys Rev E. 2008;78:065201. MathSciNet CrossRef
    171. Steur E, Tyukin I, Nijmeijer H. Semi-passivity and synchronization of diffusively coupled neuronal oscillators. Physica D. 2009;238:2119–28. MathSciNet MATH CrossRef
    172. Mauroy A, Sacr P, Sepulchre R. Kick synchronization versus diffusive synchronization. In: Proceedings of the IEEE conference on decision and control. 2012. p. 7171–83.
    173. Kielblock H, Kirst C, Timme M. Breakdown of order preservation in symmetric oscillator networks with pulse-coupling. Chaos. 2011;21:025113. MathSciNet CrossRef
    174. Vreeswijk C. Partial synchronization in populations of pulse-coupled oscillators. Phys Rev E. 1996;54:5522–37. CrossRef
    175. van Vreeswijk C. Analysis of the asynchronous state in networks of strongly coupled oscillators. Phys Rev Lett. 2000;84:5110–3. CrossRef
    176. van Vreeswijk C, Hansel D. Patterns of synchrony in neural networks with spike adaptation. Neural Comput. 2001;13:959–92. MATH CrossRef
    177. Bressloff PC, Coombes S. Dynamics of strongly-coupled spiking neurons. Neural Comput. 2000;12:91–129. CrossRef
    178. Guckenheimer J. Isochrons and phaseless sets. J Math Biol. 1975;1:259–73. MathSciNet MATH CrossRef
    179. Winfree A. The geometry of biological time. 2nd ed. New York: Springer; 2001. MATH CrossRef
    180. Osinga HM, Moehlis J. A continuation method for computing global isochrons. SIAM J Appl Dyn Syst. 2010;9:1201–28. MathSciNet MATH CrossRef
    181. Guillamon A, Huguet G. A computational and geometric approach to phase resetting curves and surfaces. SIAM J Appl Dyn Syst. 2009;8:1005–42. MathSciNet MATH CrossRef
    182. Su̧vak O, Demir A. Quadratic approximations for the isochrons of oscillators: a general theory, advanced numerical methods, and accurate phase computations. Comput Aided Des. 2010;29:1215–28.
    183. Takeshita D, Feres R. Higher order approximation of isochrons. Nonlinearity. 2010;23:1303–23. MathSciNet MATH CrossRef
    184. Mauroy A, Mezić I. On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics. Chaos. 2012;22:033112. MathSciNet CrossRef
    185. Wedgwood K. Dynamical systems techniques in the analysis of neural systems. PhD thesis, University of Nottingham; 2013.
    186. Hale JK. Ordinary differential equations. New York: Wiley; 1969. MATH
    187. Ermentrout GB, Kopell N. Multiple pulse interactions and averaging in systems of coupled neural oscillators. J Math Biol. 1991;29:195–217. MathSciNet MATH CrossRef
    188. Medvedev GS. Synchronization of coupled limit cycles. J Nonlinear Sci. 2011;21:441–64. MathSciNet MATH CrossRef
    189. Ashwin P. Weak coupling of strongly nonlinear, weakly dissipative identical oscillators. Dyn Syst. 1989;10:2471–4.
    190. Ashwin P, Dangelmayr G. Reduced dynamics and symmetric solutions for globally coupled weakly dissipative oscillators. Dyn Syst. 2005;20:333–67. MathSciNet MATH CrossRef
    191. Lee WS, Ott E, Antonsen TM. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states. Chaos. 2013;23:033116. MathSciNet CrossRef
    192. Wedgwood KCA, Lin KK, Thul R, Coombes S. Phase-amplitude descriptions of neural oscillator models. J Math Neurosci. 2013;3:2. MathSciNet CrossRef
    193. Ott W, Stenlund M. From limit cycles to strange attractors. Commun Math Phys. 2010;296:215–49. MathSciNet MATH CrossRef
    194. Medvedev GS. Synchronization of coupled stochastic limit cycle oscillators. Phys Lett A. 2010;374:1712–20. MATH CrossRef
    195. Wang Q, Young L-S. Strange attractors with one direction of instability. Commun Math Phys. 2001;218:1–97. MathSciNet MATH CrossRef
    196. Wang Q, Young L-S. From invariant curves to strange attractors. Commun Math Phys. 2002;225:275–304. MathSciNet MATH CrossRef
    197. Wang Q. Strange attractors in periodically-kicked limit cycles and Hopf bifurcations. Commun Math Phys. 2003;240:509–29. MATH CrossRef
    198. Lin KK, Young L-S. Shear-induced chaos. Nonlinearity. 2008;21:899–922. MathSciNet MATH CrossRef
    199. Lin KK, Young L-S. Dynamics of periodically kicked oscillators. J Fixed Point Theory Appl. 2010;7:291–312. MathSciNet MATH CrossRef
    200. Lin KK, Wedgwood KCA, Coombes S, Young L-S. Limitations of perturbative techniques in the analysis of rhythms and oscillations. J Math Biol. 2013;66:139–61. MathSciNet MATH CrossRef
    201. Brown E, Moehlis J, Holmes P. On the phase reduction and response dynamics of neural oscillator populations. Neural Comput. 2004;16:671–715. CrossRef
    202. Rinzel J, Ermentrout GB. Analysis of neural excitability and oscillations. In: Koch C, Segev I, editors. Methods in neuronal modeling: from synapses to networks. 1st ed. Cambridge: MIT Press; 1989. p. 135–69.
    203. Galán RF, Ermentrout GB, Urban NN. Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Phys Rev Lett. 2005;94:158101. CrossRef
    204. Tateno T, Robinson HPC. Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex. Biophys J. 2007;92:683–95. CrossRef
    205. Netoff T, Schwemmer MA, Lewis TJ. Experimentally estimating phase response curves of neurons: theoretical and practical issues. In: Schultheiss NW, Prinz AA, Butera RJ, editors. Phase response curves in neuroscience: theory, experiment, and analysis. Berlin: Springer; 2012. p. 95–129. CrossRef
    206. Gutkin BS, Ermentrout GB, Reyes AD. Phase-response curves give the responses of neurons to transient inputs. J Neurophysiol. 2005;94:1623–35. CrossRef
    207. Kotani K, Yamaguchi I, Ogawa Y, Jimbo Y, Nakao H, Ermentrout GB. Adjoint method provides phase response functions for delay-induced oscillations. Phys Rev Lett. 2012;109:044101. CrossRef
    208. Novičenko V, Pyragas K. Phase reduction of weakly perturbed limit cycle oscillations in time-delay systems. Physica D. 2012;241:1090–8. MathSciNet MATH CrossRef
    209. Govaerts W, Sautois B. Computation of the phase response curve: a direct numerical approach. Neural Comput. 2006;18:817–47. MathSciNet MATH CrossRef
    210. Ermentrout B. Type I membranes, phase resetting curves, and synchrony. Neural Comput. 1996;8:979–1001. CrossRef
    211. Ermentrout GB, Glass L, Oldeman BE. The shape of phase-resetting curves in oscillators with a saddle node on an invariant circle bifurcation. Neural Comput. 2012;24:3111–25. MathSciNet MATH CrossRef
    212. Adler R. A study of locking phenomena in oscillators. Proc IRE. 1946;34:351–7. CrossRef
    213. Ermentrout GB, Kopell N. Frequency plateaus in a chain of weakly coupled oscillators. SIAM J Appl Math. 1984;15:215–37. MathSciNet MATH CrossRef
    214. van Vreeswijk C, Abbott LF, Ermentrout GB. When inhibition not excitation synchronizes neural firing. J Comput Neurosci. 1994;1:313–21. CrossRef
    215. Chow CC. Phase-locking in weakly heterogeneous neuronal networks. Physica D. 1998;118(3–4):343–70. MathSciNet MATH CrossRef
    216. Lewis TJ, Rinzel J. Dynamics of spiking neurons connected by both inhibitory and electrical coupling. J Comput Neurosci. 2003;14:283–309. CrossRef
    217. Corinto F, Bonnin M, Gilli M. Weakly connected oscillatory network models for associative and dynamic memories. Int J Bifurc Chaos. 2007;17:4365–79. MathSciNet MATH CrossRef
    218. Izhikevich EM. Phase equations for relaxation oscillators. SIAM J Appl Math. 2000;60:1789–805. MathSciNet MATH CrossRef
    219. Winfree AT. Biological rhythms and the behaviour of populations of coupled oscillators. J Theor Biol. 1967;16:15–42. CrossRef
    220. Strogatz S. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D. 2000;143:1–20. MathSciNet MATH CrossRef
    221. Acebrón JA, Bonilla LL, Vicente CJP, Ritort F, Spigler R. The Kuramoto model: a simple paradigm for synchronization phenomena. Rev Mod Phys. 2005;77:137–85. CrossRef
    222. Karabacak Ö, Ashwin P. Heteroclinic ratchets in networks of coupled oscillators. J Nonlinear Sci. 2009;20:105–29. CrossRef
    223. Ermentrout GB. The behaviour of rings of coupled oscillators. J Math Biol. 1985;23:55–74. MathSciNet MATH CrossRef
    224. Skardal PS, Restrepo JG. Hierarchical synchrony of phase oscillators in modular networks. Phys Rev E. 2012;85:016208. CrossRef
    225. Watanabe S, Strogatz SH. Constants of motion for superconducting Josephson arrays. Physica D. 1994;74:197–253. MATH CrossRef
    226. Kori H, Kuramoto Y, Jain S, Kiss IZ, Hudson JL. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments. Phys Rev E. 2014;89:062906. CrossRef
    227. Golomb D, Wang XJ, Rinzel J. Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. J Neurophysiol. 1994;72:1109–26.
    228. Orosz G, Moehlis J, Ashwin P. Designing the dynamics of globally coupled oscillators. Prog Theor Phys. 2009;122:611–30. MATH CrossRef
    229. Skardal PS, Ott E, Restrepo JG. Cluster synchrony in systems of coupled phase oscillators with higher-order coupling. Phys Rev E. 2011;84:036208. CrossRef
    230. Ashwin P, King GP, Swift JW. Three identical oscillators with symmetric coupling. Nonlinearity. 1990;3:585–601. MathSciNet MATH CrossRef
    231. Hansel D, Mato G, Meunier C. Clustering and slow switching in globally coupled phase oscillators. Phys Rev E. 1993;48:3470–7. CrossRef
    232. Ashwin P, Burylko O, Maistrenko Y. Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators. Physica D. 2008;237:454–66. MathSciNet MATH CrossRef
    233. Cohen AH, Holmes PJ, Rand RH. The nature of the coupling between segmental oscillators of the spinal lamprey generator. J Math Biol. 1982;13:345–69. MathSciNet MATH CrossRef
    234. Kopell N. Chains of coupled oscillators. In: Arbib MA, editor. The handbook of brain theory and neural networks. Cambridge: MIT Press; 1995. p. 178–83.
    235. Ermentrout GB, Kleinfeld D. Traveling electrical waves in cortex: insights from phase dynamics and speculation on a computational role. Neuron. 2001;29:33–44. CrossRef
    236. Ermentrout GB. Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators. SIAM J Appl Math. 1992;52:1665–87. MathSciNet MATH CrossRef
    237. Kopell N, Ermentrout GB. Phase transitions and other phenomena in chains of coupled oscillators. SIAM J Appl Math. 1990;50:1014–52. MathSciNet MATH CrossRef
    238. Kopell N, Ermentrout GB. Symmetry and phaselocking in chains of weakly coupled oscillators. Commun Pure Appl Math. 1986;39:623–60. MathSciNet MATH CrossRef
    239. Rubino D, Robbins KA, Hatsopoulos NG. Propagating waves mediate information transfer in the motor cortex. Nat Neurosci. 2006;9:1549–57. CrossRef
    240. Crook SM, Ermentrout GB, Vanier MC, Bower JM. The role of axonal delay in the synchronization of networks of coupled cortical oscillators. J Comput Neurosci. 1997;4:161–72. MATH CrossRef
    241. Bressloff PC, Coombes S. Physics of the extended neuron. Int J Mod Phys B. 1997;11:2343–92. CrossRef
    242. Battogtokh D. Phase turbulence in the nonlocally coupled phase equation. Phys Lett A. 2002;299:558–64. MATH CrossRef
    243. Bick C, Timme M, Paulikat D, Rathlev D, Ashwin P. Chaos in symmetric phase oscillator networks. Phys Rev Lett. 2011;107:244101. CrossRef
    244. Kori H, Kuramoto Y. Slow switching in globally coupled oscillators: robustness and occurence through delayed coupling. Phys Rev E. 2001;63:046214. CrossRef
    245. Kori H, Kuramoto Y. Slow switching in a population of delayed pulse-coupled oscillators. Phys Rev E. 2003;68:021919.
    246. Kiss IZ, Rusin CG, Kori H, Hudson JL. Engineering complex dynamical structures: sequential patterns and desynchronization. Science. 2007;316:1886. MathSciNet MATH CrossRef
    247. Ashwin P, Postlethwaite C. On designing heteroclinic networks from graphs. Physica D. 2013;265:26–39. MathSciNet MATH CrossRef
    248. Rabinovich M, Huerta R, Varona P. Heteroclinic synchronization: ultrasubharmonic locking. Phys Rev Lett. 2006;96:014101. CrossRef
    249. Rabinovich MI, Muezzinoglu MK. Nonlinear dynamics of the brain: emotion and cognition. Phys Usp. 2010;53:357–72. CrossRef
    250. Rabinovich MI, Afraimovich VS, Bick C, Varona P. Information flow dynamics in the brain. Phys Life Rev. 2012;9:51–73. CrossRef
    251. Ashwin P, Karabacak Ö, Nowotny T. Criteria for robustness of heteroclinic cycles in neural microcircuits. J Math Neurosci. 2011;1:13. MathSciNet CrossRef
    252. Ashwin P, Orosz G, Wordsworth J, Townley S. Dynamics on networks of cluster states for globally coupled phase oscillators. SIAM J Appl Dyn Syst. 2007;6:728–58. MathSciNet MATH CrossRef
    253. Ashwin P, Borresen J. Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators. Phys Rev E. 2004;70:026203. MathSciNet CrossRef
    254. Ashwin P, Borresen J. Discrete computation using a perturbed heteroclinic network. Phys Lett A. 2005;347:208–14. MathSciNet MATH CrossRef
    255. Wordsworth J, Ashwin P. Spatiotemporal coding of inputs for a system of globally coupled phase oscillators. Phys Rev E. 2008;78:066203. MathSciNet CrossRef
    256. Hofbauer J, Sigmund K. Evolutionary game dynamics. Bull Am Math Soc. 2003;40:479–519. MathSciNet MATH CrossRef
    257. May RM, Leonard WJ. Nonlinear aspects of competition between three species. SIAM J Appl Math. 1975;29:243–53. MathSciNet MATH CrossRef
    258. Neves FS, Timme M. Computation by switching in complex networks of states. Phys Rev Lett. 2012;109:018701. CrossRef
    259. Ashwin P, Postlethwaite C. Designing heteroclinic and excitable networks in phase space using two populations of coupled cells. J Nonlinear Sci. 2015. doi:10.​1007/​s00332-015-9277-2 .
    260. Kaneko K, Tsuda I. Focus issue on chaotic itinerancy. Chaos. 2003;13:926–1164. MathSciNet MATH CrossRef
    261. Kaneko K. On the strength of attractors in a high-dimensional system: Milnor attractor network, robust global attraction, and noise-induced selection. Physica D. 1998;124:322–44. MathSciNet MATH CrossRef
    262. Kuznetsov AS, Kurths J. Stable heteroclinic cycles for ensembles of chaotic oscillators. Phys Rev E. 2002;66:026201. MathSciNet CrossRef
    263. Tsuda I. Hypotheses on the functional roles of chaotic transitory dynamics. Chaos. 2009;19:015113. MathSciNet CrossRef
    264. Stone E, Holmes P. Random perturbations of heteroclinic attractors. SIAM J Appl Math. 1990;50:726–43. MathSciNet MATH CrossRef
    265. Mainen Z, Sejnowski T. Reliability of spike timing in neocortical neurons. Science. 1995;268:1503–6. CrossRef
    266. Taillefumier T, Magnasco M. A transition to sharp timing in stochastic leaky integrate-and-fire neurons driven by frozen noisy input. Neural Comput. 2014;26:819–59. MathSciNet CrossRef
    267. Ermentrout GB, Galán R, Roberto F, Urban NN. Reliability, synchrony and noise. Trends Neurosci. 2008;31:428–34. CrossRef
    268. Goldobin DS, Pikovsky A. Synchronization and desynchronization of self-sustained oscillators by common noise. Phys Rev E. 2005;71:045201. MathSciNet CrossRef
    269. Nakao H, Arai K, Kawamura Y. Noise-induced synchronization and clustering in ensembles of uncoupled limit-cycle oscillators. Phys Rev Lett. 2007;98:184101. CrossRef
    270. Lai YM, Porter MA. Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators. Phys Rev E. 2013;88:012905. CrossRef
    271. Kawamura Y. Collective phase dynamics of globally coupled oscillators: noise-induced anti-phase synchronization. Physica D. 2014;270:20–9. MathSciNet MATH CrossRef
    272. Kawamura Y, Nakao H, Kuramoto Y. Noise-induced turbulence in nonlocally coupled oscillators. Phys Rev E. 2007;75:036209. MathSciNet CrossRef
    273. Lindner B. Effects of noise in excitable systems. Phys Rep. 2004;392:321–424. CrossRef
    274. Schwabedal JTC, Pikovsky A. Phase description of stochastic oscillations. Phys Rev Lett. 2013;110:204102. CrossRef
    275. Ly C, Ermentrout GB. Analytic approximations of statistical quantities and response of noisy oscillators. Physica D. 2011;240:719–31. MATH CrossRef
    276. Nakao H, Teramae J-N, Goldobin DS, Kuramoto Y. Effective long-time phase dynamics of limit-cycle oscillators driven by weak colored noise. Chaos. 2010;20:033126. MathSciNet CrossRef
    277. Moehlis J. Improving the precision of noisy oscillators. Physica D. 2014;272:8–17. MathSciNet MATH CrossRef
    278. Kuramoto Y. Collective synchronization of pulse-coupled oscillators and excitable units. Physica D. 1991;50:15–30. MATH CrossRef
    279. Medvedev GS, Zhuravytska S. The geometry of spontaneous spiking in neuronal networks. J Nonlinear Sci. 2012;22:689–725. MathSciNet MATH CrossRef
    280. Newhall K, Kovačič G, Kramer P, Cai D. Cascade-induced synchrony in stochastically driven neuronal networks. Phys Rev E. 2010;82:041903. MathSciNet CrossRef
    281. Ly C. Dynamics of coupled noisy neural oscillators with heterogeneous phase resetting curves. SIAM J Appl Dyn Syst. 2014;13:1733–55. MathSciNet MATH CrossRef
    282. Abouzeid A, Ermentrout B. Correlation transfer in stochastically driven neural oscillators over long and short time scales. Phys Rev E. 2011;84:061914. CrossRef
    283. Bressloff PC, Lai Y-M. Stochastic synchronization of neuronal populations with intrinsic and extrinsic noise. J Math Neurosci. 2011;1:2. MathSciNet CrossRef
    284. Burton SD, Ermentrout GB, Urban NN. Intrinsic heterogeneity in oscillatory dynamics limits correlation-induced neural synchronization. J Neurophysiol. 2012;108:2115–33. CrossRef
    285. Yoshimura K, Arai K. Phase reduction of stochastic limit cycle oscillators. Phys Rev Lett. 2008;101:154101. CrossRef
    286. Yoshimura K. Phase reduction of stochastic limit-cycle oscillators. In: Schuster HG, editor. Reviews of nonlinear dynamics and complexity. Weinheim: Wiley; 2010. p. 59–90. CrossRef
    287. Teramae J, Nakao H, Ermentrout GB. Stochastic phase reduction for a general class of noisy limit cycle oscillators. Phys Rev Lett. 2009;102:194102. CrossRef
    288. Goldobin DS, Teramae J-N, Nakao H, Ermentrout GB. Dynamics of limit-cycle oscillators subject to general noise. Phys Rev Lett. 2010;105:154101. CrossRef
    289. Nykamp DQ, Tranchina D. A population density approach that facilitates large-scale modeling of neural networks: extension to slow inhibitory synapses. Neural Comput. 2001;13:511–46. MATH CrossRef
    290. Pazó D, Montbrió E. Low-dimensional dynamics of populations of pulse-coupled oscillators. Phys Rev X. 2014;4:011009.
    291. Ariaratnam J, Strogatz S. Phase diagram for the Winfree model of coupled nonlinear oscillators. Phys Rev Lett. 2001;86:4278–81. CrossRef
    292. Luke TB, Barreto E, So P. Complete classification of the macroscopic behaviour of a heterogeneous network of theta neurons. Neural Comput. 2013;25:3207–34. MathSciNet CrossRef
    293. Montbrió E, Pazó D, Roxin A. Macroscopic description for networks of spiking neurons. Phys Rev X. 2015;5:021028.
    294. Laing CR. Exact neural fields incorporating gap junctions. SIAM J Appl Dyn Syst. 2015;14(4):1899–929. MathSciNet CrossRef
    295. Abrams D, Strogatz S. Chimera states for coupled oscillators. Phys Rev Lett. 2004;93:174102. CrossRef
    296. Abrams D, Mirollo R, Strogatz S, Wiley D. Solvable model for chimera states of coupled oscillators. Phys Rev Lett. 2008;101:084103. CrossRef
    297. Laing CR. The dynamics of chimera states in heterogeneous Kuramoto networks. Physica D. 2009;238:1569–88. MathSciNet MATH CrossRef
    298. Panaggio MJ, Abrams DM. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity. 2015;28:67–87. MathSciNet CrossRef
    299. Kuramoto Y, Battogtokh D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom Complex Syst. 2002;5:380–5.
    300. Kuramoto Y. Reduction methods applied to non-locally coupled oscillator systems. In: Nonlinear dynamics and chaos: where do we go from here?. Bristol: IOP; 2003. p. 209–27.
    301. Watanabe S, Strogatz SH. Constants of motion for superconducting Josephson arrays. Physica D. 1994;74:197–253. MATH CrossRef
    302. Wolfrum M, Omel’chenko OE. Chimera states are chaotic transients. Phys Rev E. 2011;84:015201. CrossRef
    303. Martens EA. Bistable chimera attractors on a triangular network of oscillator populations. Phys Rev E. 2010;82:016216. MathSciNet
    304. Shima S-I, Kuramoto Y. Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys Rev E. 2004;69:036213. CrossRef
    305. Ashwin P, Burylko O. Weak chimeras in minimal networks of coupled phase oscillators. Chaos. 2015;25:013106. MathSciNet CrossRef
    306. Tinsley MR, Nkomo S, Showalter K. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat Phys. 2012;8:662–5. CrossRef
    307. Martens EA, Thutupalli S, Fourrière A, Hallatschek O. Chimera states in mechanical oscillator networks. Proc Natl Acad Sci USA. 2013;110:10563–7. CrossRef
    308. Omel’chenko I, Maistrenko Y, Hövel P, Schöll E. Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys Rev Lett. 2012;109:234102. CrossRef
    309. Sethia GC, Sen A. Chimera states: the existence criteria revisited. Phys Rev Lett. 2014;112:144101. CrossRef
    310. Olmi S, Navas A, Boccaletti S, Torcini A. Hysteretic transitions in the Kuramoto model with inertia. Phys Rev E. 2014;90:042905. CrossRef
    311. Sieber J, Omel’chenko O, Wolfrum M. Controlling unstable chaos: stabilizing chimera states by feedback. Phys Rev Lett. 2014;112:054102. CrossRef
    312. Maistrenko Y, Vasylenko A, Sudakov O, Levchenko R, Maistrenko V. Cascades of multi-headed chimera states for coupled phase oscillators. Int J Bifurc Chaos. 2014;24:1440014. MathSciNet CrossRef
    313. Xie J, Knobloch E. Multicluster and traveling chimera states in nonlocal phase-coupled oscillators. Phys Rev E. 2014;90:022919. CrossRef
    314. Olmi S, Politi A, Torcini A. Collective chaos in pulse-coupled neural networks. Europhys Lett. 2010;92:60007. CrossRef
    315. Ma R, Wang J, Liu Z. Robust features of chimera states and the implementation of alternating chimera states. Europhys Lett. 2010;91:40006. CrossRef
    316. Lysyansky B, Popovych OV, Tass P. Multi-frequency activation of neuronal networks by coordinated reset stimulation. Interface Focus. 2010;1:75–85. CrossRef
    317. Hlinka J, Coombes S. Using computational models to relate structural and functional brain connectivity. Eur J Neurosci. 2012;36:2137–45. CrossRef
    318. Arsiwalla XD, Zucca R, Betella A, Martinez E, Dalmazzo D, Omedas P, Deco G, Verschure PFMJ. Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction. Front Neuroinform. 2015;9:2. CrossRef
    319. Nicosia V, Nicosia V, Valencia M, Valencia M, Chavez M, Chavez M, Díaz-Guilera A, Díaz-Guilera A, Latora V. Remote synchronization reveals network symmetries and functional modules. Phys Rev Lett. 2013;110:174102. CrossRef
    320. Daffertshofer A, van Wijk BCM. On the influence of amplitude on the connectivity between phases. Front Neuroinform. 2011;5:6. CrossRef
    321. Nadim F. Invertebrate pattern generation: overview. In: Jaeger D, Jung R, editors. Encyclopedia of computational neuroscience. Heidelberg: Springer; 2014.
    322. Collins JJ, Richmond SA. Hard-wired central pattern generators for quadrupedal locomotion. Biol Cybern. 1994;71:375–85. MATH CrossRef
    323. Sherwood WE, Harris-Warrick R, Guckenheimer J. Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator. J Comput Neurosci. 2010;30:323–60. MathSciNet CrossRef
    324. Sakurai A, Newcomb J, Lillvis J, Katz P. Different roles for homologous interneurons in species exhibiting similar rhythmic behaviors. Curr Biol. 2011;21:1036–43. CrossRef
    325. Bal T, Nagy F, Moulins M. The pyloric central pattern generator in Crustacea: a set of conditional neural oscillators. J Comp Physiol. 1988;163:715–27. CrossRef
    326. Cohen AH, Rossignol S, Grillner S, editors. Neural control of rhythmic movements in vertebrates. New York: Wiley-Blackwell; 1988.
    327. Marder E, Bucher D. Central pattern generators and the control of rhythmic movements. Curr Biol. 2001;11:986–96. CrossRef
    328. Hooper SL. Central pattern generators. In: eLS. New York: Wiley; 2001.
    329. Ljspeert AJ. Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 2008;21:642–53. CrossRef
    330. Crespi A, Karakasiliotis K, Guignard A, Ljspeert AJ. Salamandra robotica II: an amphibious robot to study salamander-like swimming and walking gaits. IEEE Trans Robot. 2013;29:308–20. CrossRef
    331. Collins JJ, Stewart IN. Coupled nonlinear oscillators and the symmetries of animal gaits. J Nonlinear Sci. 1993;3:349–92. MathSciNet MATH CrossRef
    332. Golubitsky M, Stewart I, Buono P-L, Collins JJ. Symmetry in locomotor central pattern generators and animal gaits. Nature. 1999;401:693–5. CrossRef
    333. Shilnikov A, Gordon R, Belykh I. Polyrhythmic synchronization in bursting networking motifs. Chaos. 2008;18:037120. MathSciNet CrossRef
    334. Wojcik J, Schwabedal J, Clewley R, Shilnikov AL. Key bifurcations of bursting polyrhythms in 3-cell central pattern generators. PLoS ONE. 2014;9:92918. CrossRef
    335. Brascamp JW, Klink PC, Levelt WJM. The ‘laws’ of binocular rivalry: 50 years of Levelt’s propositions. Vis Res. 2015;109:20–37. CrossRef
    336. Shpiro A, Curtu R, Rinzel J, Rubin N. Dynamical characteristics common to neuronal competition models. J Neurophysiol. 2007;97:462–73. CrossRef
    337. Blake R. A neural theory of binocular rivalry. Psychol Rev. 1989;96:145–67. CrossRef
    338. Laing C, Chow C. A spiking neuron model for binocular rivalry. J Comput Neurosci. 2002;12:39–53. CrossRef
    339. Wilson HR. Minimal physiological conditions for binocular rivalry and rivalry memory. Vis Res. 2007;47:2741–50. CrossRef
    340. Diekman CO, Golubitsky M. Network symmetry and binocular rivalry experiments. J Math Neurosci. 2014;4:12. MathSciNet CrossRef
    341. Ashwin P, Lavric A. A low-dimensional model of binocular rivalry using winnerless competition. Physica D. 2010;239:529–36. MathSciNet MATH CrossRef
    342. Mintchev SM, Young L-S. Self-organization in predominantly feedforward oscillator chains. Chaos. 2009;19:043131. MathSciNet CrossRef
    343. Lanford OE, Mintchev SM. Stability of a family of travelling wave solutions in a feedforward chain of phase oscillators. Nonlinearity. 2015;28:237–62. MathSciNet MATH CrossRef
    344. Glass L, Mackey MC. From clocks to chaos: the rythms of life. Princeton: Princeton University Press; 1988.
    345. Payeur A, Maler L, Longtin A. Oscillatorylike behavior in feedforward neuronal networks. Phys Rev E. 2015;92:012703. CrossRef
    346. McCullen NJ, Mullin T, Golubitsky M. Sensitive signal detection using a feed-forward oscillator network. Phys Rev Lett. 2007;98:254101. CrossRef
    347. Golubitsky M, Postlethwaite C. Feed-forward networks, center manifolds, and forcing. Discrete Contin Dyn Syst. 2012;32(8):2913–35. MathSciNet MATH CrossRef
    348. Laudanski J, Coombes S, Palmer AR, Summer CJ. Mode-locked spike trains in responses of ventral cochlear nucleus chopper and onset neurons to periodic stimuli. J Neurophysiol. 2010;103:1226–37. CrossRef
    349. Lerud KD, Almonte FV, Kim JC, Large EW. Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals. Hear Res. 2014;308:41–9. CrossRef
    350. Daffertshofer A, van Wijk BCM. Transient motor behavior and synchronization in the cortex. In: Rabinovich MI, Friston KJ, Varona P, editors. Principles of brain dynamics. Cambridge: MIT Press; 2012. p. 233–59.
    351. Cartwright JHE, González DL, Piro O. Universality in three-frequency resonances. Phys Rev E. 1999;59:2902–6. CrossRef
    352. al Azad AK, Ashwin P. Within-burst synchrony changes for coupled elliptic bursters. SIAM J Appl Dyn Syst. 2010;9:261–81. MathSciNet MATH CrossRef
    353. Segev R, Shapira Y, Benveniste M, Ben-Jacob E. Observations and modeling of synchronized bursting in two-dimensional neural networks. Phys Rev E. 2001;64:011920. CrossRef
    354. Nakada K, Miura K, Hayashi H. Burst synchronization and chaotic phenomena in two strongly coupled resonate-and-fire neurons. Int J Bifurc Chaos. 2008;18:1249. MathSciNet MATH CrossRef
    355. Zhou C, Kurths J. Spatiotemporal coherence resonance of phase synchronization in weakly coupled chaotic oscillators. Phys Rev E. 2002;65:040101. MathSciNet CrossRef
    356. So P, Barreto E. Generating macroscopic chaos in a network of globally coupled phase oscillators. Chaos. 2011;21:033127. MathSciNet CrossRef
    357. So P, Luke TB, Barreto E. Networks of theta neurons with time-varying excitability: macroscopic chaos, multistability, and final-state uncertainty. Physica D. 2014;267:16–26. MathSciNet MATH CrossRef
    358. Tiesinga PHE, Fellous J-M, Sejnowski TJ. Attractor reliability reveals deterministic structure in neuronal spike trains. Neural Comput. 2002;14(7):1629–50. MATH CrossRef
    359. Goldobin D, Pikovsky A. Antireliability of noise-driven neurons. Phys Rev E. 2006;73:061906. MathSciNet CrossRef
    360. Lin KK, Shea-Brown E, Young L-S. Reliability of coupled oscillators. J Nonlinear Sci. 2009;19:497–545. MathSciNet MATH CrossRef
    361. Ichinose N, Aihara K, Judd K. Extending the concept of isochrons from oscillatory to excitable systems for modelling an excitable neuron. Int J Bifurc Chaos. 1998;8:2375–85. MATH CrossRef
    362. Rabinovitch A, Rogachevskii I. Threshold, excitability and isochrons in the Bonhoeffer–van der Pol system. Chaos. 1999;9:880–6. MathSciNet MATH CrossRef
    363. Wilson D, Moehlis J. Extending phase reduction to excitable media: theory and applications. SIAM Rev. 2015;57:201–22. MathSciNet CrossRef
    364. Schwemmer M, Lewis TJ. The robustness of phase-locking in neurons with dendro-dendritic electrical coupling. J Math Biol. 2014;68:303–40. MathSciNet MATH CrossRef
    365. Amzica F, Steriade M. Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. J Neurosci. 2000;20:6648–65.
    366. Lee S-H, Dan Y. Neuromodulation of brain states. Neuron. 2012;76:209–22. CrossRef
    367. Stiefel KM, Gutkin BS, Sejnowski TJ. The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. J Comput Neurosci. 2009;26:289–301. MathSciNet CrossRef
    368. Vladimirski BB, Tabak J, O’Donovan MJ, Rinzel J. Episodic activity in a heterogeneous excitatory network, from spiking neurons to mean field. J Comput Neurosci. 2008;25:39–63. MathSciNet CrossRef
    369. Tsubo Y, Teramae J-N, Fukai T. Synchronization of excitatory neurons with strongly heterogeneous phase responses. Phys Rev Lett. 2007;99:228101. CrossRef
    370. Moon S, Ghanem R, Kevrekidis I. Coarse graining the dynamics of coupled oscillators. Phys Rev Lett. 2006;96:144101. CrossRef
    371. Holt DF. Handbook of computational group theory. London: Chapman & Hall; 2005. (Discrete mathematics and its applications). MATH CrossRef
  • 作者单位:Peter Ashwin (1)
    Stephen Coombes (2)
    Rachel Nicks (3)

    1. Centre for Systems Dynamics and Control, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, Exeter, EX4 4QF, UK
    2. School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
    3. School of Mathematics, University of Birmingham, Watson Building, Birmingham, B15 2TT, UK
  • 刊物主题:Mathematical Modeling and Industrial Mathematics; Neurosciences; Applications of Mathematics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2190-8567
文摘
The tools of weakly coupled phase oscillator theory have had a profound impact on the neuroscience community, providing insight into a variety of network behaviours ranging from central pattern generation to synchronisation, as well as predicting novel network states such as chimeras. However, there are many instances where this theory is expected to break down, say in the presence of strong coupling, or must be carefully interpreted, as in the presence of stochastic forcing. There are also surprises in the dynamical complexity of the attractors that can robustly appear—for example, heteroclinic network attractors. In this review we present a set of mathematical tools that are suitable for addressing the dynamics of oscillatory neural networks, broadening from a standard phase oscillator perspective to provide a practical framework for further successful applications of mathematics to understanding network dynamics in neuroscience. Keywords Central pattern generator Chimera state Coupled oscillator network Groupoid formalism Heteroclinic cycle Isochrons Master stability function Network motif Perceptual rivalry Phase oscillator Phase–amplitude coordinates Stochastic oscillator Strongly coupled integrate-and-fire network Symmetric dynamics Weakly coupled phase oscillator network Winfree model

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700