A process-based evaluation of dust-emitting winds in the CMIP5 simulation of HadGEM2-ES
详细信息    查看全文
  • 作者:Stephanie Fiedler ; Peter Knippertz ; Stephanie Woodward ; Gill M. Martin…
  • 关键词:Dust emission ; Nocturnal low ; level jet ; Geostrophic wind ; Earth system model ; Climatology ; North Africa
  • 刊名:Climate Dynamics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:46
  • 期:3-4
  • 页码:1107-1130
  • 全文大小:4,442 KB
  • 参考文献:Agust-Panareda A, Vasiljevic D, Beljaars A, Bock O, Guichard F, Nuret M, Garcia Mendez A, Andersson E, Bechtold P, Fink A, Hersbach H, Lafore JP, Ngamini JB, Parker DJ, Redelsperger JL, Tompkins AM (2009) Radiosonde humidity bias correction over the West African region for the special AMMA reanalysis at ECMWF. Q J R Meteorol Soc 135(640):595–617. doi:10.​1002/​qj.​396 CrossRef
    Bagnold RA (1941) The physics of blown sands and desert dunes. Methuen, New York
    Bain CL, Parker DJ, Taylor CM, Kergoat L, Guichard F (2010) Observations of the nocturnal boundary layer associated with the West African Monsoon. Mon Weather Rev 138(8):3142–3156. doi:10.​1175/​2010MWR3287.​1 CrossRef
    Banta R, Pichugina Y, Newsom R (2003) Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J Atmos Sci 60(20):2549–2555CrossRef
    Bellouin N, Rae J, Jones A, Johnson C, Haywood J, Boucher O (2011) Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J Geophys Res 116(D20):206. doi:10.​1029/​2011JD016074
    Birch CE, Parker D, Marsham J, Copsey D, Garcia-Carreras L (2014) A seamless assessment of the role of convection in the water cycle of the West African Monsoon. J Geophys Res Atmos 119(6):2890–2912CrossRef
    Blackadar A (1957) Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull Am Meteorol Soc 83:283–290CrossRef
    Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh S, Sherwood S, Stevens B, Zhang X (2013) Clouds and Aerosols. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
    Brown A, Beare R, Edwards J, Lock A, Keogh S, Milton S, Walters D (2008) Upgrades to the boundary-layer scheme in the met office numerical weather prediction model. Bound Layer Meteorol 128(1):117–132. doi:10.​1007/​s10546-008-9275-0 CrossRef
    Brown AR, Beljaars ACM, Hersbach H (2006) Errors in parametrizations of convective boundary-layer turbulent momentum mixing. Q J R Meteorol Soc 132:1859–1876CrossRef
    Cakmur RV, Miller R, Torresm O (2004) Incorporating the effect of small-scale circulations upon dust emissions in an atmospheric general circulation model. J Geophys Res Atmos 109(D07):201
    Collins W, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones C, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth-System model—HadGEM2. Geosci Model Dev 4:1051–1075. doi:10.​5194/​gmd-4-1051-2011 CrossRef
    De Longueville F, Hountondji YC, Henry S, Ozer P (2010) What do we know about effects of desert dust on air quality and human health in West Africa compared to other regions? Sci Total Environ 409(1):1–8CrossRef
    Decker M, Brunke MA, Wang Z, Sakaguchi K, Zeng X, Bosilovich MG (2012) Evaluation of the reanalysis products from GFSC, NCEP and ECMWF using flux tower observations. J Clim 25:1916–1944CrossRef
    Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holma EV, Isaksen L, Kallberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRef
    Evan AT, Flamant C, Fiedler S, Doherty O (2014) An analysis of aeolian dust in climate models. Geophys Res Lett. doi:10.​1002/​2014GL060545
    Fécan F, Marticorena B, Bergametti G (1999) Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann Geophys 17:149–157CrossRef
    Fiedler S, Schepanski K, Heinold B, Knippertz P, Tegen I (2013) Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission. J Geophys Res Atmos 118. doi:10.​1002/​jgrd.​50394
    Fiedler S, Schepanski K, Knippertz P, Heinold B, Tegen I (2014) How important are atmospheric depressions and mobile cyclones for emitting mineral dust aerosol in North Africa? Atmos Chem Phys 14:8983–9000. doi:10.​5194/​acp-14-8983-2014 CrossRef
    Gillette DA, Adams J, Endo A, Smith D (1980) Threshold velocities for input of soil particles in the air by desert soils. J Geophys Res 85:5621–5630CrossRef
    Ginoux P, Chin M, Tegen I, Prospero J, Holben B, Dubovik O, Lin SJ (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106D:20,255–20,274CrossRef
    Griffin DW (2007) Atmospheric movement of mircoorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20(3):459477. doi:10.​1128/​CMR.​00039-06
    Heinold B, Knippertz P, Marsham JH, Fiedler S, Dixon NS, Schepanski K, Laurent B, Tegen I (2013) The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: estimates from convection-permitting simulations. J Geophys Res Atmos 118:1–16. doi:10.​1002/​jgrd.​50402 CrossRef
    Holtslag A, Svensson G, Baas P, Basu S, Beare B, Beljaars A, Bosveld F, Cuxart J, Lindvall J, Steeneveld G et al (2013) Stable atmospheric boundary layers and diurnal cycles: challenges for weather and climate models. Bull Am Meteorol Soc 94:1691–1706. doi:10.​1175/​BAMS-D-11-00187.​1 CrossRef
    Hourdin F, Gueye M, Diallo B, Dufresne JL, Menut L, Marticoréna B, Siour G, Guichard F (2014) Parametrization of convective transport in the boundary layer and its impact on the representation of diurnal cycle of wind and dust emissions. Atmos Chem Phys Discuss 14(19):27425–27458. doi:10.​5194/​acpd-14-27425-2014
    Huneeus N, Schulz M, Balkanski Y, Griesfeller J, Prospero J, Kinne S, Bauer S, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Fillmore D, Ghan S, Ginoux P, Grini A, Horowitz L, Koch D, Krol MC, Landing W, Liu X, Mahowald N, Miller R, Morcrette JJ, Myhre G, Penner J, Perlwitz J, Stier P, Takemura T, Zender CS (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11(15):7781–7816. doi:10.​5194/​acp-11-7781-2011 CrossRef
    Jickells T, An Z, Andersen K, Baker A, Bergametti G, Brooks N, Cao J, Boyd P, Duce R, Hunter K, Kawahata H, Kubilay N, laRoche J, Liss P, Mahowald N, Prospero J, Ridgwell A, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308(5718):67–71CrossRef
    Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Parsons Chini L, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570. doi:10.​5194/​gmd-4-543-2011 CrossRef
    Kallos G, Papadopoulos A, Katsafados P, Nickovic S (2006) Transatlantic saharan dust transport: model simulation and results. J Geophys Res Atmos 111(D9). doi:10.​1029/​2005JD006207
    Kalnay E, et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471. doi:10.​1175/​1520-0477(1996)077<:​TNYRP>2.​0.​C
    Kaplan JO (2001) Geophysical applications of vegetation modeling. Lund University, Techinical report
    Karydis VA, Kumar P, Barahona D, Sokolik IN, Nenes A (2011) On the effect of dust particles on global cloud condensation nuclei and cloud droplet number. J Geophys Res 116(D23):204. doi:10.​1029/​2011JD016283
    King JC, Connolley WM, Derbyshire SH (2001) Sensitivity of modelled Antarctic climate to surface and boundary-layer flux parametrizations. Q J R Meteorol Soc 127(573):779–794. doi:10.​1002/​qj.​49712757304 CrossRef
    Knippertz P (2008) Dust emissions in the West African heat trough: the role of the diurnal cycle and of extratropical disturbances. Meteorol Z 17(5):553–563CrossRef
    Largeron Y, Guichard F, Bouniol D, Couvreux F, Kergoat L, Marticorena B (2015) Can we use surface wind fields from meteorological reanalyses for Sahelian dust emission simulations? Geophys Res Lett 2014G. doi:10.​1002/​2014GL062938,L062938
    Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737CrossRef
    Louis J, Tiedtke M, Geleyn J (1982) A short history of the PBL parameterization at ECMWF. In: Proceedings of workshop on boundary-layer parameterization. ECMWF, Reading, UK, p 5979
    Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP discover from 1 km AVHRR data. Int J Remote Sens 21(6–7):1303–1330. doi:10.​1080/​014311600210191 CrossRef
    Mahowald N, Baker A, Bergametti G, Brooks N, Duce R, Jickells T, Kubilay N, Prospero J, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Global Geochem Cycle 19:GB4025
    Marsham JH, Knippertz P, Dickson N, Parker DJ, Lister G (2011) The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer. Geophys Res Lett 38(L16):803. doi:10.​1029/​2011GL048368
    Marsham JH, Dixon NS, Garcia-Carreras L, Lister GMS, Parker DJ, Knippertz P, Birch CE (2013) The role of moist convection in the west african monsoon system: insights from continental-scale convection-permitting simulations. Geophys Res Lett 40(9):1843–1849. doi:10.​1002/​grl.​50347 CrossRef
    Marticorena B, Bergametti G (1995) Modelling the atmospheric dust cycle. 1: design of a soilderived dust emission scheme. J Geophys Res 100:16,415–16,430CrossRef
    Martin GM, Levine RC (2012) The influence of dynamic vegetation on the present-day simulation and future projections of the south asian summer monsoon in the hadgem2 family. Earth Syst Dyn 3(2):245–261. doi:10.​5194/​esd-3-245-2012 CrossRef
    Martin GM, Bellouin N, Collins W, Culverwell I, Halloran P, Hardiman S, Hinton T, Jones C, McDonald R, AJ M, OConnor F, Roberts M, Rodriguez J, Woodward S, Best M, Brooks M, Brown A, Butchart N, Dear-den C, Derbyshire S, Dharssi I, Doutriaux-Boucher M, Edwards J, Falloon P, Gedney N, Gray L, Hewitt H, Hobson M, Huddleston M, Hughes J, Ineson S, Ingram W, James P, Johns T, Johnson C, Jones A, Jones C, Joshi M, Keen A, Liddicoat S, Lock A, Maidens A, Manners J, Milton S, Rae J, Ridley J, Sellar A, Senior C, Totterdell I, Verhoef A, Vidale P, Wiltshire A (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev 4:723–757. doi:10.​5194/​gmd-4-723-2011
    Mulcahy JP, Walters DN, Bellouin N, Milton SF (2014) Impacts of increasing the aerosol complexity in the met office global numerical weather prediction model. Atmos Chem Phys 14(9):4749–4778. doi:10.​5194/​acp-14-4749-2014 CrossRef
    Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochem Cycle 18:GB2005CrossRef
    Parker D, Burton R, Diongue-Niang A, Ellis R, Felton M, Taylor C, Thorncroft C, Bessemoulin P, Tompkins A (2005) The diurnal cycle of the West African monsoon circulation. Q J R Meteorol Soc 131(611, Part a):2839–2860. doi:10.​1256/​qj.​04.​52 CrossRef
    Parker DJ, Fink A, Janicot S, Ngamini J, Douglas M, Afiesimama E, Agusti-Panareda A, Beljaars A, Dide F, Diedhiou A, Lebel T, Polcher J, Redelsperger J, Thorncroft C, Wilson G (2008) The AMMA radiosonde program and its implications for the future of atmospheric monitoring over Africa. Bull Am Meteorol Soc 89:1015–1027. doi:10.​1175/​2008BAMS2436.​1 CrossRef
    Pospichal B, Karam DB, Crewell S, Flamant C, Huenerbein A, Bock O, Said F (2010) Diurnal cycle of the intertropical discontinuity over West Africa analysed by remote sensing and mesoscale modelling. Q J R Meteorol Soc 136(1, SI):92–106. doi:10.​1002/​qj.​435 CrossRef
    Prospero J (1996) Saharan dust transport over the North Atlantic Ocean and Mediterranean: an overview. In: Guerzoni S, Chester R (eds) The impact of desert dust across the Mediterranean, environmental science and technology library, vol 11. Springer, Netherlands, pp 133–151CrossRef
    Redelsperger JL, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African monsoon multidisciplinary analysis: an international research project and field campaign. Bull Am Meteorol Soc 87:1739. doi:10.​1175/​BAMS-87-12-1739 CrossRef
    Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648CrossRef
    Rosenfeld D, Rudich Y, Lahav R (2001) Desert dust suppressing precipitation: a possible desertification feedback loop. PNAS 98(11):5975–5980CrossRef
    Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D et al (2010) The ncep climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057CrossRef
    Sandu I, Beljaars A, Bechtold P, Mauritsen T, Balsamo G (2013) Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J Adv Model Earth Syst. doi:10.​1002/​jame.​20013
    Schepanski K, Tegen I, Todd M, Heinold B, Bönisch G, Laurent B, Macke A (2009) Meteorological processes forcing Saharan dust emission inferred from MSG-SEVERI observations of subdaily dust source activation and numerical models. J Geophys Res 114(D10):201
    Schepanski K, Knippertz P, Fiedler S, Timouk F, Demarty J (2014) The sensitivity of nocturnal low-level jets and near-surface winds over the Sahel to model resolution, initial conditions and boundary-layer set-up. Q J R Meteorol Soc. doi:10.​1002/​qj.​2453
    Schepanski K, Tegen I, Laurent B, Heinold B, Macke A (2007) A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels. Geophys Res Lett 34(18):L18803. doi:10.​1029/​2007GL030168 CrossRef
    Schmechtig C, Marticorena B, Chatenet B, Bergametti G, Rajot JL, Coman A (2011) Simulation of the mineral dust content over Western Africa from the event to the annual scale with the CHIMERE-DUST model. Atmos Chem Phys 11:7185–7207CrossRef
    Schulz M, Prospero JM, Baker AR, Dentener F, Ickes L, Liss PS, Mahowald NM, Nickovic S, García-Pando CP, Rodríguez S, et al. (2012) Atmospheric transport and deposition of mineral dust to the ocean: implications for research needs. Environ Sci Technol 46(19):10390–10404
    Shao Y, Wyrwoll KH, Chappell A, Huang J, Lin Z, McTrainsh GH, Mikami M, Tanaka TY, Wang X, Yoon S (2011) Dust cycle: a emerging core theme in earth system science. Aeolian Res 2:181–204CrossRef
    Sokolik I, Toon O (1996) Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381:681–683CrossRef
    Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J Atmos Sci 63(3):920–935CrossRef
    Steeneveld GJ, Mauritsen T, de Bruijn EIF, Vil-Guerau de Arellano J, Svensson G, Holtslag AAM (2008) Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99. J Appl Meteorol Climatol 47(3):869–887CrossRef
    Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, DordrechtCrossRef
    Svensson G, Holtslag A, Kumar V, Mauritsen T, Steeneveld G, Angevine W, Bazile E, Beljaars A, Bruijn E, Cheng A, Conangla L, Cuxart J, Ek M, Falk M, Freedman F, Kitagawa H, Larson V, Lock A, Mailhot J, Masson V, Park S, Pleim J, Sderberg S, Weng W, Zampieri M (2011) Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: the second GABLS experiment. Bound Layer Meteorol 140(2):177–206. doi:10.​1007/​s10546-011-9611-7 CrossRef
    Tanaka T, Chiba M (2006) A numerical study of the contributions of dust source regions to the global dust budget. Global Planet Change 52:88–104CrossRef
    Tegen I, Harrison S, Kohfeld K, Prentice I, Coe M, Heimann M (2002) Impact of vegetation and preferential source areas on global dust aerosols: results from a model study. J Geophys Res 107(D21):4576CrossRef
    Textor C, Schulz M, Guibert S, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Feichter H, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Horowitz L, Huang P, Isaksen I, Iversen I, Kloster S, Koch D, Kirkevåg A, Kristjansson JE, Krol M, Lauer A, Lamarque JF, Liu X, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland Ø, Stier P, Takemura T, Tie X (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6:1777–1813CrossRef
    Timmreck C, Schulz M (2004) Significant dust simulation differences in nudged and climatological operation mode of the AGCM ECHAM. J Geophys Res Atmos 109(D13). doi:10.​1029/​2003JD004381 , d13202
    Todd MC, Washington R, Raghavan S, Lizcano G, Knippertz P (2008) Regional model simulations of the Bodele low-level jet of northern Chad during the Bodélé Dust Experiment (BoDEx 2005). J Clim 21(5):995–1012. doi:10.​1175/​2007JCLI1766.​1 CrossRef
    Tompkins A, Cardinali C, Morcrette J, Rodwell M (2005) Influence of aerosol climatology on forecasts of the African Easterly Jet. Geophys Res Lett 32(L10):801
    Van de Wiel B, Moene A, Steeneveld G, Baas P, Bosveld F, Holtslag A (2010) A conceptional view on inertial oscillations and nocturnal low-level jets. J Atmos Sci 67:2679–2689CrossRef
    Viterbo P, Beljaars A, Mahfouf JF, Teixeira J (1999) The representation of soil moisture freezing and its impact on the stable boundary layer. Q J R Meteorol Soc 125(559):2401–2426. doi:10.​1002/​qj.​49712555904 CrossRef
    Washington R, Todd M (2005) Atmospheric controls on mineral dust emission from the Bodele depression, Chad: the role of the low-level jet. Geophys Res Let 32(L17):701
    Woodward S (2001) Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J Geophys Res Atmos 106(D16):18,155–18,166. doi:10.​1029/​2000JD900795 CrossRef
    Woodward S (2011) Mineral dust in HadGEM2. Technical note 87, Hadley Centre
    Zender C, Miller R, Tegen I (2004) Quantifying mineral dust mass budgets: terminology constraints and current estimates. EOS Trans AGU 85(48):509–512CrossRef
    Zobler L (1986) A world soil file for global climate modeling. Techinical report NASA TM 87802, 32 pp, NASA, NASA, Washington, DC
  • 作者单位:Stephanie Fiedler (1) (2) (3)
    Peter Knippertz (1) (4)
    Stephanie Woodward (5)
    Gill M. Martin (5)
    Nicolas Bellouin (5) (6)
    Andrew N. Ross (1)
    Bernd Heinold (7)
    Kerstin Schepanski (7)
    Cathryn E. Birch (8)
    Ina Tegen (7)

    1. School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
    2. Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
    3. Max Planck Institute for Meteorology, Bundesstrasse 53, 20146, Hamburg, Germany
    4. Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131, Karlsruhe, Germany
    5. Met Office, Exeter, EX1 3PB, UK
    6. Department of Meteorology, University of Reading, Reading, RG6 6BB, UK
    7. Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318, Leipzig, Germany
    8. MetOffice@Leeds, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
Despite the importance of dust aerosol in the Earth system, state-of-the-art models show a large variety for North African dust emission. This study presents a systematic evaluation of dust emitting-winds in 30 years of the historical model simulation with the UK Met Office Earth-system model HadGEM2-ES for the Coupled Model Intercomparison Project Phase 5. Isolating the effect of winds on dust emission and using an automated detection for nocturnal low-level jets (NLLJs) allow an in-depth evaluation of the model performance for dust emission from a meteorological perspective. The findings highlight that NLLJs are a key driver for dust emission in HadGEM2-ES in terms of occurrence frequency and strength. The annually and spatially averaged occurrence frequency of NLLJs is similar in HadGEM2-ES and ERA-Interim from the European Centre for Medium-Range Weather Forecasts. Compared to ERA-Interim, a stronger pressure ridge over northern Africa in winter and the southward displaced heat low in summer result in differences in location and strength of NLLJs. Particularly the larger geostrophic winds associated with the stronger ridge have a strengthening effect on NLLJs over parts of West Africa in winter. Stronger NLLJs in summer may rather result from an artificially increased mixing coefficient under stable stratification that is weaker in HadGEM2-ES. NLLJs in the Bodélé Depression are affected by stronger synoptic-scale pressure gradients in HadGEM2-ES. Wintertime geostrophic winds can even be so strong that the associated vertical wind shear prevents the formation of NLLJs. These results call for further model improvements in the synoptic-scale dynamics and the physical parametrization of the nocturnal stable boundary layer to better represent dust-emitting processes in the atmospheric model. The new approach could be used for identifying systematic behavior in other models with respect to meteorological processes for dust emission. This would help to improve dust emission simulations and contribute to decreasing the currently large uncertainty in climate change projections with respect to dust aerosol. Keywords Dust emission Nocturnal low-level jet Geostrophic wind Earth system model Climatology North Africa

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700