Observed changes in the Earth’s dynamic oblateness from GRACE data and geophysical models
详细信息    查看全文
  • 作者:Y. Sun ; P. Ditmar ; R. Riva
  • 关键词:$$J_{2}$$ J 2 ; $$C_{20}$$ C 20 ; Satellite laser ranging ; Glacial isostatic adjustment ; Temporal gravity field variations ; Mass transport
  • 刊名:Journal of Geodesy
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:90
  • 期:1
  • 页码:81-89
  • 全文大小:526 KB
  • 参考文献:A G, Wahr J, Zhong S,(2012) Computations of the viscoelastic response of a 3-d compressible Earth to surface loading: an application to glacial isostatic adjustment in antarctica and canada. Geophys J Int 192(2):557–572. doi:10.​1093/​gji/​ggs030
    Bergmann-Wolf I, Zhang L, Dobslaw H (2014) Global eustatic sea-level variations for the approximation of geocenter motion from GRACE. J Geod Sci 4(1):37–48
    Blewitt G, Lavalleé D, Clarke P, Nurutdinov K (2001) A new global mode of Earth deformation: seasonal cycle detected. Science (New York, NY) 294(5550):2342–2345. doi:10.​1126/​science.​1065328
    Blewitt G, Lavalleé D, Clarke P, Nurutdinov K (2001) A new global mode of Earth deformation: seasonal cycle detected. Science (New York, NY) 294(5550):2342–2345. doi:10.​1126/​science.​1065328 CrossRef
    Chambers DP, Wahr J, Nerem RS (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31(13):L13310. doi:10.​1029/​2004GL020461 CrossRef
    Chambers DP, Schroeter J (2011) Measuring ocean mass variability from satellite gravimetry. J Geodyn 52(5):333–343. doi:10.​1016/​j.​jog.​2011.​04.​004 CrossRef
    Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005) Low degree spherical harmonic influences on gravity recovery and climate experiment (GRACE) water storage estimates. Geophys Res Lett 32(14):L14405. doi:10.​1029/​2005GL022964 CrossRef
    Cheng M, Tapley BD, Ries JC (2013) Deceleration in the Earth’s oblateness. J Geophys Res: Solid Earth 118(2):740–747. doi:10.​1002/​jgrb.​50058 CrossRef
    Cheng M, Tapley BD (2004) Variations in the Earth’s oblateness during the past 28 years. J Geophys Res: Solid Earth 109(B9):B09402. doi:10.​1029/​2004JB003028
    Cox CM, Chao BF (2002) Detection of a large-scale mass redistribution in the terrestrial system since 1998. Science 297(5582):831–833. doi:10.​1126/​science.​1072188 CrossRef
    Dickey JO, Marcus SL, de, Viron O, Fukumori I, (2002) Recent Earth oblateness variations: unraveling climate and postglacial rebound effects. Science (New York, NY) 298(5600):1975–1977. doi:10.​1126/​science.​1077777
    Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J R Astron Soc 46(3):647–667. doi:10.​1111/​j.​1365-246X.​1976.​tb01252.​x
    Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J R Astron Soc 46(3):647–667. doi:10.​1111/​j.​1365-246X.​1976.​tb01252.​x CrossRef
    A G, Wahr J, Zhong S, (2012) Computations of the viscoelastic response of a 3-d compressible Earth to surface loading: an application to glacial isostatic adjustment in antarctica and canada. Geophys J Int 192(2):557–572. doi:10.​1093/​gji/​ggs030
    Gross RS, Blewitt G, Clarke PJ, Lavalleé D (2004) Degree-2 harmonics of the Earth’s mass load estimated from GPS and Earth rotation data. Geophys Res Lett 31(7):L07601. doi:10.​1029/​2004GL019589
    Hughes CW, Tamisiea ME, Bingham RJ, Williams J (2012) Weighing the ocean: using a single mooring to measure changes in the mass of the ocean. Geophys Res Lett 39(17):L17602. doi:10.​1029/​2012GL052935
    Ivins ER, James TS (2005) Antarctic glacial isostatic adjustment: a new assessment. Antarct Sci 17(04):541–553. doi:10.​1017/​S095410200500296​8 CrossRef
    Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J Geod 83(10):903–913. doi:10.​1007/​s00190-009-0308-3 CrossRef
    Liu X, Ditmar P, Siemes C, Slobbe DC, Revtova E, Klees R, Riva R, Zhao Q (2010) DEOS mass transport model (DMT-1) based on GRACE satellite data: methodology and validation. Geophys J Int 181(2):769–788. doi:10.​1111/​j.​1365-246X.​2010.​04533.​x
    Milne GA, Mitrovica JX (1998) Postglacial sea-level change on a rotating Earth. Geophys J Int 133(1):1–19. doi:10.​1046/​j.​1365-246X.​1998.​1331455.​x CrossRef
    Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409(6823):1026–1029. doi:10.​1038/​35059054 CrossRef
    Mitrovica JX, Forte AM (1997) Radial profile of mantle viscosity: results from the joint inversion of convection and postglacial rebound observables. J Geophys Res: Solid Earth 102(B2):2751–2769. doi:10.​1029/​96JB03175 CrossRef
    Nerem RS, Wahr J (2011) Recent changes in the Earth’s oblateness driven by greenland and antarctic ice mass loss. Geophys Res Lett 38(13):L13501. doi:10.​1029/​2011GL047879
    Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5g (VM2) model and GRACE. Annu Rev Earth Planet Sci 32(1):111–149. doi:10.​1146/​annurev.​aarth.​32.​082503.​144359
    Rietbroek R, Brunnabend SE, Dahle C, Kusche J, Flechtner F, Schrter J, Timmermann R (2009) Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution. J Geophys Res: Oceans 114(C11):C11004. doi:10.​1029/​2009JC005449
    Siegismund F, Romanova V, Khl A, Stammer D (2011) Ocean bottom pressure variations estimated from gravity, nonsteric sea surface height and hydrodynamic model simulations. J Geophys Res: Oceans 116(C7):C07021. doi:10.​1029/​2010JC006727
    Spada G, Barletta VR, Klemann V, Riva REM, Martinec Z, Gasperini P, Lund B, Wolf D, Vermeersen LLA, King MA (2011) A benchmark study for glacial isostatic adjustment codes. Geophys J Int 185(1):106–132. doi:10.​1111/​j.​1365-246X.​2011.​04952.​x CrossRef
    Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res: Solid Earth 113(B8):B08410
    Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33(8):L08402. doi:10.​1029/​2005GL025285 CrossRef
    Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9):L09607. doi:10.​1029/​2004GL019920
    Thomas M (2002) Ocean induced variations of Earth’s rotation results from a simultaneous model of global circulation and tides. Ph.D. thesis, University of Hamburg, Germany
    Urban TJ, Vermeersen BLA, Lindenbergh RC, Helsen MM, Bamber JL, van de Wal RSW, van den Broeke MR, Schutz BE (2009) Glacial isostatic adjustment over antarctica from combined ICESat and GRACE satellite data. Earth Planet Sci Lett 288(3—-4):516–523. doi:10.​1016/​j.​epsl.​2009.​10.​013
    Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res: Solid Earth 103(B12):30205–30229. doi:10.​1029/​98JB02844 CrossRef
    Watkins M, Yuan D (2012) JPL level-2 processing standards document for Product Release 05 GRACE 327–744, version 5. Jet Propulsion Laboratory
    Wouters B, Riva REM, Lavalle DA, Bamber JL (2011) Seasonal variations in sea level induced by continental water mass: first results from GRACE. Geophys Res Lett 38(3):L03303. doi:10.​1029/​2010GL046128
    Wu X, Ray J, van Dam T (2012) Geocenter motion and its geodetic and geophysical implications. J Geodyn 58:44–61. doi:10.​1016/​j.​jog.​2012.​01.​007 CrossRef
    Wu X, Heflin MB, Ivins ER, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res: Solid Earth 111(9):B09401. doi:10.​1029/​2005JB004100
  • 作者单位:Y. Sun (1)
    P. Ditmar (1)
    R. Riva (1)

    1. Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Mathematical Applications in Geosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1394
文摘
A new methodology is proposed to estimate changes in the Earth’s dynamic oblateness (\(\Delta {J_{2}}\) or equivalently, \(-\sqrt{5}\Delta {C_{20}}\)) on a monthly basis. The algorithm uses monthly Gravity Recovery and Climate Experiment (GRACE) gravity solutions, an ocean bottom pressure model and a glacial isostatic adjustment (GIA) model. The resulting time series agree remarkably well with a solution based on satellite laser ranging (SLR) data. Seasonal variations of the obtained time series show little sensitivity to the choice of GRACE solutions. Reducing signal leakage in coastal areas when dealing with GRACE data and accounting for self-attraction and loading effects when dealing with water redistribution in the ocean is crucial in achieving close agreement with the SLR-based solution in terms of de-trended solutions. The obtained trend estimates, on the other hand, may be less accurate due to their dependence on the GIA models, which still carry large uncertainties. Keywords \(J_{2}\) \(C_{20}\) Satellite laser ranging Glacial isostatic adjustment Temporal gravity field variations Mass transport

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700