Assessment of Shock Pretreatment of Corn Stover Using the Carboxylate Platform
详细信息    查看全文
  • 作者:Pratik Darvekar ; Mark T. Holtzapple
  • 关键词:Lignocellulose ; Enzymatic hydrolysis ; Mixed ; culture fermentations ; Shock pretreatment ; Continuum particle distribution modeling (CPDM)
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:178
  • 期:6
  • 页码:1081-1094
  • 全文大小:696 KB
  • 参考文献:1.National Research Council. Committee on America’s Climate C. (2010). Advancing the science of climate Change.
    2.Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conversion and Management, 52, 858–875. doi:10.​1016/​j.​enconman.​2010.​08.​013 .CrossRef
    3.Sims, R. E., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101, 1570–80. doi:10.​1016/​j.​biortech.​2009.​11.​046 .CrossRef
    4.Schmer, M. R., Vogel, K. P., Mitchell, R. B., & Perrin, R. K. (2008). Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 105, 464–9. doi:10.​1073/​pnas.​0704767105 .CrossRef
    5.Agler, M. T., Wrenn, B. A., Zinder, S. H., & Angenent, L. T. (2011). Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends in Biotechnology, 29, 70–8. doi:10.​1016/​j.​tibtech.​2010.​11.​006 .CrossRef
    6.Granda, C. B., Holtzapple, M. T., Luce, G., Searcy, K., & Mamrosh, D. L. (2009). Carboxylate platform: the MixAlco process part 2: process economics. Applied Biochemistry and Biotechnology, 156, 107–24. doi:10.​1007/​s12010-008-8481-z .CrossRef
    7.Holtzapple, M., & Granda, C. (2009). Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms. Applied Biochemistry and Biotechnology, 156, 95–106. doi:10.​1007/​s12010-008-8466-y .CrossRef
    8.Holtzapple, M. T., & Granda, C. B. (2009). Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms. Applied Biochemistry and Biotechnology, 156, 95–106. doi:10.​1007/​s12010-008-8466-y .CrossRef
    9.Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686. doi:10.​1016/​j.​biortech.​2004.​06.​025 .CrossRef
    10.Taherzadeh, M. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 9, 1621–1651.CrossRef
    11.Zhu, L. (2008). Structural features affecting biomass enzymatic digestibility. Bioresource Technology, 99, 3817–3828.CrossRef
    12.Kumar, R., & Wyman, C. E. (2009). Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresource Technology, 100, 4193–4202. doi:10.​1016/​j.​biortech.​2008.​11.​058 .CrossRef
    13.Singh, J., Suhag, M., & Dhaka, A. (2015). Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydrate Polymers, 117, 624–631. doi:10.​1016/​j.​carbpol.​2014.​10.​012 .CrossRef
    14.Sierra, R., Smith, A., Granda, C., & Holtzapple, M. T. (2008). Producing fuels and chemicals from lignocellulosic biomass. Chemical Engineering Progress, 104, S10–S18.
    15.Tao, L., Aden, A., Elander, R. T., Pallapolu, V. R., Lee, Y. Y., Garlock, R. J., Balan, V., Dale, B. E., Kim, Y., Mosier, N. S., Ladisch, M. R., Falls, M., Holtzapple, M. T., Sierra, R., Shi, J., Ebrik, M. A., Redmond, T., Yang, B., Wyman, C. E., Hames, B., Thomas, S., & Warner, R. E. (2011). Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresource Technology, 102, 11105–11114. doi:10.​1016/​j.​biortech.​2011.​07.​051 .CrossRef
    16.Wyman, C. E., Balan, V., Dale, B. E., Elander, R. T., Falls, M., Hames, B., Holtzapple, M. T., Ladisch, M. R., Lee, Y. Y., Mosier, N., Pallapolu, V. R., Shi, J., Thomas, S. R., & Warner, R. E. (2011). Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresource Technology, 102, 11052–11062. doi:10.​1016/​j.​biortech.​2011.​06.​069 .CrossRef
    17.Kim, S. H. (2005). Lime pretreatment and enzymatic hydrolysis of corn stover. College Station: Texas A&M University.
    18.Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162, 1872–1880. doi:10.​1007/​s12010-010-8965-5 .CrossRef
    19.Jones, M., Jones, M. (2007). Effects of physical and chemical pretreatments on the crystallinity of bagasse.
    20.Kelly, C. G. (2002). Generating highly digestible animal feed via thermo-chemical and hydrodynamic cavitation treatment of agricultural wastes.
    21.Falls, M. D. (2011). Development of oxidative lime pretreatment and shock treatment to produce highly digestible lignocellulose for biofuel and ruminant feed applications. College Station: Texas A&M University. Tex. pp. 1 online resource.
    22.Holtzapple, M. T. (2014). Novel mechanical pretreatment for lignocellulosic feedstocks, final report. DOE Project DE - EE 00050005.00.
    23.Meysing, D. (2012). Investigations of biomass pretreatment and submerged fixed-bed fermentation. College Station: Texas A&M University. Tex. pp. 1 online resource.
    24.Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure.
    25.Selig, M., Weiss, N., Ji, Y. (2008). Enzymatic saccharification of lignocellulosic biomass. NREL. TP-510–42629.
    26.Loescher, M. E. (1996). Volatile fatty acid fermentation of biomass and kinetic modeling using the CPDM method. Ph D. Texas A&M University.
    27.Golub, K. (2012). Effect of bioreactor mode of operation on mixed-acid fermentations. College Station: Texas A&M University. Tex. pp. 1 online resource.
    28.Fu, Z., & Holtzapple, M. T. (2011). Anaerobic thermophilic fermentation for carboxylic acid production from in-storage air-lime-treated sugarcane bagasse. Applied Microbiology and Biotechnology, 90, 1669–1679.CrossRef
    29.Fu, Z. Conversion of sugarcane bagasse to carboxylic acids under thermophilic conditions.
    30.Ross, M. (1998). Production of acetic acid from waste biomass. pp. 208p.
    31.Datta, R. (1981). Acidogenic fermentation of corn stover. Biotechnology and Bioengineering, 23, 61–77.CrossRef
    32.Fu, Z. (2010). Consolidated bioprocessing of sugarcane bagasse and chicken manure to ammonium carboxylates by a mixed culture of marine microorganisms. Bioresource Technology, 101, 2825–2836.CrossRef
    33.Forrest, A. (2010). Suitability of pineapple, Aloe vera, molasses, glycerol, and office paper as substrates in the MixAlco process™. Biomass and bioenergy, 34, 1195–1200.CrossRef
    34.Golub, K. W., Forrest, A. K., Wales, M. E., Hammett, A. J. M., Cope, J. L., Wilkinson, H. H., & Holtzapple, M. T. (2013). Comparison of three screening methods to select mixed-microbial inoculum for mixed-acid fermentations. Bioresource Technology, 130, 739–749. doi:10.​1016/​j.​biortech.​2012.​10.​010 .CrossRef
    35.(2014). 2013 Peer Review Report - U.S. Department of Energy, http://​www.​energy.​gov/​sites/​prod/​files/​2014/​03/​f14/​2013_​peer_​review.​pdf .
  • 作者单位:Pratik Darvekar (1)
    Mark T. Holtzapple (1)

    1. Department of Chemical Engineering, Texas A&M University, 3122 TAMU Room 626, College Station, TX, 77843-3122, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
Corn stover was pretreated with lime and shock, a mechanical process that uses a shockwave to alter the biomass structure. Two pretreatments (lime-only and lime + shock) were evaluated using enzymatic hydrolysis, batch mixed-culture fermentations, and continuous countercurrent mixed-culture fermentation. In a 120-h enzymatic hydrolysis, shock pretreatment increased the glucan digestibility of submerged lime pretreatment (SLP) corn stover by 3.5 % and oxidative lime pretreatment (OLP) corn stover by 2.5 %. The continuum particle distribution model (CPDM) was used to simulate a four-stage continuous countercurrent mixed-culture fermentation using empirical rate models obtained from simple batch experiments. The CPDM model determined that lime + shock pretreatment increased the total carboxylic acids yield by 28.5 % over lime-only pretreatment in a countercurrent fermentation with a volatile solids loading rate (VSLR) of 12 g/(L/day) and liquid retention time (LRT) of 30 days. In a semi-continuous countercurrent fermentation performed in the laboratory for 112 days with a VSLR of 1.875 g/(L day) and LRT of 16 days, lime + shock pretreatment increased the total carboxylic acid yield by 14.8 %. The experimental results matched closely with CPDM model predictions (4.05 % error).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700