Cauchy–Kovalevskaya Extension Theorem in Fractional Clifford Analysis
详细信息    查看全文
  • 作者:N. Vieira
  • 关键词:Cauchy–Kovalevskaya extension theorem ; Fractional Clifford analysis ; Fractional monogenic polynomials ; Fractional Dirac operator ; Caputo derivatives ; Primary 30G35 ; Secondary 35A10 ; 26A33 ; 30A05 ; 31B05
  • 刊名:Complex Analysis and Operator Theory
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:9
  • 期:5
  • 页码:1089-1109
  • 全文大小:503 KB
  • 参考文献:1.Andrews, G., Askey, R., Roy, R.: Encyclopedia of Mathematics and Its Applications. Special functions, vol. 17. Cambridge University Press, Cambridge (2000)
    2.Brackx, F., De Schepper, H., Lávi?ka, R., Sou?ek, V.: The Cauchy–Kovalevskaya extension theorem in Hermitian Clifford analysis. J. Math. Anal. Appl. 381(2), 649-60 (2011)View Article MATH MathSciNet
    3.Brackx, F., Delanghe, R., Sommen, F.: Research Notes in Mathematics. Clifford analysis, vol. 76, Pitman Advanced Publishing Program, Boston (1982)
    4.Cauchy, A.: Oeuvres Complètes. Série 1-Tome VII. Gauthier-Villars, Paris, pp. 17-8 (1882-974)
    5.Delanghe, R., Sommen, F., Souc?ek, V.: Clifford algebras and spinor-valued functions. A function theory for the Dirac operator. In: Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht (1992)
    6.De Knock, B., Pe?a-Pe?a, D., Sommen, F.: On the CK-extension for a special overdetermined system in complex Clifford analysis. In: Sabadini, I., et al. (eds.) Trends in Mathematics: Hypercomplex Analysis, pp. 115-24. Birkh?user, Basel (2009)
    7.De Ridder, H.: Discrete Clifford analysis: function theory and integral transforms. PhD Thesis, University of Gent (2013)
    8.De Ridder, H., De Schepper, H., Sommen, F.: The Cauchy–Kovalevskaya extension theorem in discrete Clifford analysis. Commun. Pure Appl. Anal. 10(4), 1097-109 (2011)View Article MATH MathSciNet
    9.De Schepper, N., Sommen, F.: Cauchy–Kowalevski extensions and monogenic plane waves using spherical monogenics. Bull. Braz. Soc. 44(2), 321-50 (2013)View Article MATH
    10.Goldfain, E.: Complexity in quantum field theory and physics beyond the standard model. Chaos Solitons Fractals 28(4), 913-22 (2006)View Article MATH
    11.K?hler, U., Vieira, N.: Fractional Fischer decomposition in Clifford analysis, hypercomplex analysis: new perspectives and applications. In: Bernstein, S., K?hler, U., Sabadini, I., Sommen, F. (eds.) Trends in Mathematics. Birkh?user, Basel (in press)
    12.Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
    13.Kowalevsky, S.: Zur Theorie der partiellen Differentialgleichungen. J. Reine Angew. Math. 80, 1-2 (1875)MATH
    14.Li, M.F., Ren, J.R., Zhu, T.: Fractional Vector Calculus and Fractional Special Function (2010). arXiv:-001.-889v1
    15.Malonek, H., Pe?a-Pe?a, D., Sommen, F.: A Cauchy–Kowalevski theorem for inframonogenic functions. Math. J. Okayama Univ. 53, 167-72 (2011)MATH MathSciNet
    16.Roberts, M.D.: Fractional Derivative Cosmology (2009). arXiv:-909.-171v1
    17.Tarasov, V.E.: Fractional vector calculus and fractional Maxwells equations. Ann. Phys. 323(11), 2756-778 (2008)View Article MATH MathSciNet
  • 作者单位:N. Vieira (1)

    1. Department of Mathematics, CIDMA, Center for Research and Development in Mathematics and Applications, University of Aveiro, Campus Universitário de Santiago, 3810-193?, Aveiro, Portugal
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematics
    Operator Theory
    Analysis
  • 出版者:Birkh盲user Basel
  • ISSN:1661-8262
文摘
In this paper, we establish the fractional Cauchy–Kovalevskaya extension (\(\textit{FCK}\)-extension) theorem for fractional monogenic functions defined on \(\mathbb {R}^d\). Based on this extension principle, fractional Fueter polynomials, forming a basis of the space of fractional spherical monogenics, i.e. fractional homogeneous polynomials, are introduced. We studied the connection between the \(\textit{FCK}\)-extension of functions of the form \(x^\alpha P_l\) and the classical Gegenbauer polynomials. Finally we present two examples of \(\textit{FCK}\)-extension.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700