The Generation of Definitive Endoderm from Human Embryonic Stem Cells is Initially Independent from Activin A but Requires Canonical Wnt-Signaling
详细信息    查看全文
  • 作者:Ortwin Naujok (1)
    Ulf Diekmann (1)
    Sigurd Lenzen (1)
  • 关键词:Human ESCs ; Definitive endoderm ; GSK3beta inhibition ; Wnt/脽 ; catenin pathway ; Primitive streak
  • 刊名:Stem Cell Reviews and Reports
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:10
  • 期:4
  • 页码:480-493
  • 全文大小:3,097 KB
  • 参考文献:1. Naujok, O., & Lenzen, S. (2012). Pluripotente Stammzellen zur Zellersatztherapie des Diabetes mellitus. / Deutsche Medizinische Wochenschrift, 137, 1062鈥?066. CrossRef
    2. Naujok, O., Burns, C., Jones, P. M., & Lenzen, S. (2011). Insulin-producing surrogate beta-cells from embryonic stem cells: are we there yet? / Molecular Therapy, 19, 1759鈥?768. CrossRef
    3. Kubo, A., Shinozaki, K., Shannon, J. M., Kouskoff, V., Kennedy, M., Woo, S., et al. (2004). Development of definitive endoderm from embryonic stem cells in culture. / Development, 131, 1651鈥?662. CrossRef
    4. D鈥橝mour, K. A., Agulnick, A. D., Eliazer, S., Kelly, O. G., Kroon, E., & Baetge, E. E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. / Nature Biotechnology, 23, 1534鈥?541. CrossRef
    5. Rodaway, A., & Patient, R. (2001). Mesendoderm. an ancient germ layer? / Cell, 105, 169鈥?72. CrossRef
    6. Technau, U., & Scholz, C. B. (2003). Origin and evolution of endoderm and mesoderm. / International Journal of Developmental Biology, 47, 531鈥?39.
    7. Hanna, J. H., Saha, K., & Jaenisch, R. (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. / Cell, 143, 508鈥?25. CrossRef
    8. Mfopou, J. K., Chen, B., Mateizel, I., Sermon, K., & Bouwens, L. (2010). Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. / Gastroenterology, 138, 2233鈥?245. CrossRef
    9. Kroon, E., Martinson, L. A., Kadoya, K., Bang, A. G., Kelly, O. G., Eliazer, S., et al. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. / Nature Biotechnology, 26, 443鈥?52. CrossRef
    10. D鈥橝mour, K. A., Bang, A. G., Eliazer, S., Kelly, O. G., Agulnick, A. D., Smart, N. G., et al. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. / Nature Biotechnology, 24, 1392鈥?401. CrossRef
    11. Cho, C. H., Hannan, N. R., Docherty, F. M., Docherty, H. M., Joao Lima, M., Trotter, M. W., et al. (2012). Inhibition of activin/nodal signalling is necessary for pancreatic differentiation of human pluripotent stem cells. / Diabetologia, 55, 3284鈥?295. CrossRef
    12. Naujok, O., & Lenzen, S. (2012). A critical re-evaluation of CD24-positivity of human embryonic stem cells differentiated into pancreatic progenitors. / Stem Cell Reviews and Reports, 8, 779鈥?91. CrossRef
    13. Zhu, S., Wurdak, H., Wang, J., Lyssiotis, C. A., Peters, E. C., Cho, C. Y., et al. (2009). A small molecule primes embryonic stem cells for differentiation. / Cell Stem Cell, 4, 416鈥?26. CrossRef
    14. Holland, J. D., Klaus, A., Garratt, A. N., & Birchmeier, W. (2013). Wnt signaling in stem and cancer stem cells. / Current Opinion in Cell Biology, 25, 254鈥?64. CrossRef
    15. ten Berge, D., Koole, W., Fuerer, C., Fish, M., Eroglu, E., & Nusse, R. (2008). Wnt signaling mediates self-organization and axis formation in embryoid bodies. / Cell Stem Cell, 3, 508鈥?18. CrossRef
    16. Barrow, J. R., Howell, W. D., Rule, M., Hayashi, S., Thomas, K. R., Capecchi, M. R., et al. (2007). Wnt3 signaling in the epiblast is required for proper orientation of the anteroposterior axis. / Developmental Biology, 312, 312鈥?20. CrossRef
    17. Kirby, L. A., Schott, J. T., Noble, B. L., Mendez, D. C., Caseley, P. S., Peterson, S. C., et al. (2012). Glycogen synthase kinase 3 (GSK3) inhibitor, SB-216763, promotes pluripotency in mouse embryonic stem cells. / PLoS ONE, 7, e39329. CrossRef
    18. Price, F. D., Yin, H., Jones, A., van Ijcken, W., Grosveld, F., & Rudnicki, M. A. (2012). Canonical Wnt signaling induces a primitive endoderm metastable state in mouse embryonic stem cells. / Stem Cells, 31, 752鈥?64. CrossRef
    19. Nakanishi, M., Kurisaki, A., Hayashi, Y., Warashina, M., Ishiura, S., Kusuda-Furue, M., et al. (2009). Directed induction of anterior and posterior primitive streak by Wnt from embryonic stem cells cultured in a chemically defined serum-free medium. / FASEB Journal, 23, 114鈥?22. CrossRef
    20. Davidson, K. C., Adams, A. M., Goodson, J. M., McDonald, C. E., Potter, J. C., Berndt, J. D., et al. (2012). Wnt/beta-catenin signaling promotes differentiation, not self-renewal, of human embryonic stem cells and is repressed by Oct4. / Proceedings of the National Academy of Sciences of the United States of America, 109, 4485鈥?490.
    21. Sumi, T., Tsuneyoshi, N., Nakatsuji, N., & Suemori, H. (2008). Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. / Development, 135, 2969鈥?979. CrossRef
    22. Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., de Sousa, C., Lopes, S. M., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. / Nature, 448, 191鈥?95. CrossRef
    23. Bone, H. K., Nelson, A. S., Goldring, C. E., Tosh, D., & Welham, M. J. (2011). A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. / Journal of Cell Science, 124, 1992鈥?000. CrossRef
    24. Doble, B. W., & Woodgett, J. R. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. / Journal of Cell Science, 116, 1175鈥?186. CrossRef
    25. Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., et al. (2008). The ground state of embryonic stem cell self-renewal. / Nature, 453, 519鈥?23. CrossRef
    26. Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L. B., Azarin, S. M., et al. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. / Proceedings of the National Academy of Sciences of the United States of America, 109, 1848鈥?857.
    27. Osafune, K., Caron, L., Borowiak, M., Martinez, R. J., Fitz-Gerald, C. S., Sato, Y., et al. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. / Nature Biotechnology, 26, 313鈥?15. CrossRef
    28. Kunisada, Y., Tsubooka-Yamazoe, N., Shoji, M., & Hosoya, M. (2012). Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. / Stem Cell Research, 8, 274鈥?84. CrossRef
    29. Pereira, L. A., Wong, M. S., Mossman, A. K., Sourris, K., Janes, M. E., Knezevic, K., et al. (2012). Pdgfralpha and Flk1 are direct target genes of Mixl1 in differentiating embryonic stem cells. / Stem Cell Research, 8, 165鈥?79. CrossRef
    30. Wang, P., Rodriguez, R. T., Wang, J., Ghodasara, A., & Kim, S. K. (2011). Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. / Cell Stem Cell, 8, 335鈥?46. CrossRef
    31. Jiang, W., Wang, J., & Zhang, Y. (2013). Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway. / Cell Research, 23, 122鈥?30. CrossRef
    32. Nostro, M. C., Sarangi, F., Ogawa, S., Holtzinger, A., Corneo, B., Li, X., et al. (2011). Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. / Development, 138, 861鈥?71. CrossRef
    33. Jiang, W., Zhang, D., Bursac, N., & Zhang, Y. (2013). WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of hESCs. / Stem Cell Reports, 1, 46鈥?2. CrossRef
    34. Rezania, A., Bruin, J. E., Riedel, M. J., Mojibian, M., Asadi, A., Xu, J., et al. (2012). Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. / Diabetes, 61, 2016鈥?029. CrossRef
    35. Bruin, J. E., Rezania, A., Xu, J., Narayan, K., Fox, J. K., O鈥橬eil, J. J., et al. (2013). Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. / Diabetologia, 56, 1987鈥?998. CrossRef
    36. Pereira, L. A., Wong, M. S., Mei Lim, S., Stanley, E. G., & Elefanty, A. G. (2012). The Mix family of homeobox genes-key regulators of mesendoderm formation during vertebrate development. / Developmental Biology, 367, 163鈥?77. CrossRef
    37. Bernardo, A. S., Faial, T., Gardner, L., Niakan, K. K., Ortmann, D., Senner, C. E., et al. (2011). BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. / Cell Stem Cell, 9, 144鈥?55. CrossRef
    38. Tan, J. Y., Sriram, G., Rufaihah, A. J., Neoh, K. G., & Cao, T. (2013). Efficient derivation of lateral plate and paraxial mesoderm subtypes from human embryonic stem cells through GSKi-mediated differentiation. / Stem Cells and Development, 22, 1893鈥?906. CrossRef
    39. Arnold, S. J., Stappert, J., Bauer, A., Kispert, A., Herrmann, B. G., & Kemler, R. (2000). Brachyury is a target gene of the Wnt/beta-catenin signaling pathway. / Mechanisms of Development, 91, 249鈥?58. CrossRef
    40. McLean, A. B., D鈥橝mour, K. A., Jones, K. L., Krishnamoorthy, M., Kulik, M. J., Reynolds, D. M., et al. (2007). Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. / Stem Cells, 25, 29鈥?8. CrossRef
    41. Gadue, P., Huber, T. L., Paddison, P. J., & Keller, G. M. (2006). Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. / Proceedings of the National Academy of Sciences of the United States of America, 103, 16806鈥?6811.
    42. Katoh, M., & Katoh, M. (2010). Integrative genomic analyses of CXCR4: transcriptional regulation of CXCR4 based on TGFbeta, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 transcription factors. / International Journal of Oncology, 36, 415鈥?20.
    43. Evans, A. L., Faial, T., Gilchrist, M. J., Down, T., Vallier, L., Pedersen, R. A., et al. (2012). Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. / PLoS ONE, 7, e33346. CrossRef
    44. Pereira, L. A., Wong, M. S., Lim, S. M., Sides, A., Stanley, E. G., & Elefanty, A. G. (2011). Brachyury and related Tbx proteins interact with the Mixl1 homeodomain protein and negatively regulate Mixl1 transcriptional activity. / PLoS ONE, 6, e28394. CrossRef
    45. Zhang, H., Fraser, S. T., Papazoglu, C., Hoatlin, M. E., & Baron, M. H. (2009). Transcriptional activation by the Mixl1 homeodomain protein in differentiating mouse embryonic stem cells. / Stem Cells, 27, 2884鈥?895. CrossRef
    46. Boucher, D. M., Schaffer, M., Deissler, K., Moore, C. A., Gold, J. D., & Burdsal, C. A. (2000). goosecoid expression represses Brachyury in embryonic stem cells and affects craniofacial development in chimeric mice. / International Journal of Developmental Biology, 44, 279鈥?88.
    47. Izzi, L., Silvestri, C., von Both, I., Labbe, E., Zakin, L., Wrana, J. L., et al. (2007). Foxh1 recruits Gsc to negatively regulate Mixl1 expression during early mouse development. / The EMBO Journal, 26, 3132鈥?143. CrossRef
    48. Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., et al. (2004). Derivation of Embryonic Stem-Cell Lines from Human Blastocysts. / New England Journal of Medicine, 350, 1353鈥?356. CrossRef
    49. Borowiak, M., Maehr, R., Chen, S., Chen, A. E., Tang, W., Fox, J. L., et al. (2009). Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. / Cell Stem Cell, 4, 348鈥?58. CrossRef
    50. Diekmann, U., Naujok, O., Blasczyk, R., & M眉ller, T. (2013). Embryonic stem cells of the non-human primate Callithrix jacchus can be differentiated into definitive endoderm by Activin-A but not IDE-1/2. / Journal of Tissue Engineering and Regenerative Medicine. Chichester, West Sussex, UK: John Wiley & Sons.
    51. Kramer, T., Schmidt, B., & Lo Monte, F. (2012). Small-Molecule Inhibitors of GSK-3: Structural Insights and Their Application to Alzheimer鈥檚 Disease Models. / International Journal of Alzheimer's Disease, 2012, 381029. CrossRef
  • 作者单位:Ortwin Naujok (1)
    Ulf Diekmann (1)
    Sigurd Lenzen (1)

    1. Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Lower Saxony, Germany
  • ISSN:1558-6804
文摘
The activation of the TGF-beta pathway by activin A directs ES cells into the definitive endoderm germ layer. However, there is evidence that activin A/TGF-beta is not solely responsible for differentiation into definitive endoderm. GSK3beta inhibition has recently been shown to generate definitive endoderm-like cells from human ES cells via activation of the canonical Wnt-pathway. The GSK3beta inhibitor CHIR-99021 has been reported to generate mesoderm from human iPS cells. Thus, the specific role of the GSK3beta inhibitor CHIR-99021 was analyzed during the differentiation of human ES cells and compared against a classic endoderm differentiation protocol. At high concentrations of CHIR-99021, the cells were directed towards mesodermal cell fates, while low concentrations permitted mesodermal and endodermal differentiation. Finally, the analyses revealed that GSK3beta inhibition rapidly directed human ES cells into a primitive streak-like cell type independently from the TGF-beta pathway with mesoderm and endoderm differentiation potential. Addition of low activin A concentrations effectively differentiated these primitive streak-like cells into definitive endoderm. Thus, the in vitro differentiation of human ES cells into definitive endoderm is initially independent from the activin A/TGF-beta pathway but requires high canonical Wnt-signaling activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700