n , n ?2, and let L be a second-order matrix strongly elliptic operator in Ω written in divergence form. There is a vast literature dealing with the study of domains of fractional powers of operators corresponding to various problems (beginning with the Dirichlet and Neumann problems) with homogeneous boundary conditions for the equation Lu = f, including the solution of the Kato square root problem, which arose in 1961. Mixed problems and a class of problems for higher-order systems have been covered as well. We suggest a new abstract approach to the topic, which permits one to obtain the results that we deem to be most important in a much simpler and unified way and cover new operators, namely, classical boundary operators on the Lipschitz boundary Γ = ?/em>Ω or part of it. To this end, we simultaneously consider two well-known operators associated with the boundary value problem." />
Fractional powers of operators corresponding to coercive problems in Lipschitz domains
详细信息    查看全文
  • 作者:M. S. Agranovich (113)
    A. M. Selitskii (213)
  • 关键词:Lipschitz domain ; strongly elliptic system ; coercive problem ; Kato’s square root problem
  • 刊名:Functional Analysis and Its Applications
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:47
  • 期:2
  • 页码:83-95
  • 全文大小:215KB
  • 参考文献:1. Sh. Agmon, “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems,-Comm. Pure Appl. Math., 15:2 (1962), 119-47. CrossRef
    2. M. S. Agranovich, “Regularity of variational solutions to linear boundary value problems in Lipschitz domains,-Funkts. Anal. Prilozhen., 40:4 (2006), 83-03; English transl.: Functional Anal. Appl., 40:4 (2006), 313-29. CrossRef
    3. M. S. Agranovich, “To the theory of the Dirichlet and Neumann problems for strongly elliptic systems in Lipschitz domains,-Funkts. Anal. Prilozhen., 41:4 (2007), 1-1; English transl.: Functional Anal. Appl., 41:4 (2007), 247-63. CrossRef
    4. M. S. Agranovich, “Potential type operators and transmission problems for strongly elliptic second-order systems in Lipschitz domains,-Funkts. Anal. Prilozhen., 43:3 (2009), 3-5; English transl.: Functional Anal. Appl., 43:3 (2009), 165-83. CrossRef
    5. M. S. Agranovich, “Strongly elliptic second-order systems with boundary conditions on a nonclosed Lipschitz surface,-Funkts. Anal. Prilozhen., 45:1 (2011), 1-5; English transl.: Functional Anal. Appl., 45:1 (2011), 1-2. CrossRef
    6. M. S. Agranovich, “Mixed problems in a Lipschitz domain for strongly elliptic second-order systems,-Funkts. Anal. Prilozhen., 45:2 (2011), 1-2; English transl.: Functional Anal. Appl., 45:2 (2011), 81-8. CrossRef
    7. M. S. Agranovich, “Remarks on strongly elliptic second-order systems in Lipschitz domains,-Russian J. Math. Phys., 20:4 (2012), 405-16. CrossRef
    8. M. S. Agranovich, Sobolev Spaces, Their Generalizatrions, and Elliptic Problems in Smooth and Lipschitz Domains [in Russian], MTsNMO, Moscow, 2013.
    9. M. S. Agranovich and M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type,-UspekhiMat. Nauk, 19:3(117) (1964), 53-61; English transl.: Russian Math. Surveys, 19:3 (1964), 53-57.
    10. W. Arendt, “Semigroups and evolution equations: functional calculus, regularity and kernel estimates,-in: Handbook of Differential Equations, Evolutionary Differential Equations, vol. 1, Elsevier/North-Holland, Amsterdam, 2004, 1-5.
    11. P. Auscher, N. Badr, R. Haller-Dintelmann, and J. Rehberg, The square root problem for second order, divergence form operators with mixed boundary conditions on / L p, http://arxiv.org/abs/1210.0780v1.
    12. P. Auscher, S. Hofmann, M. Lacey, J. Lewis, A. McIntosh, and P. Tchamitchian, “The solution of Kato’s conjectures,-C. R. Acad. Sci. Paris, Sér. 1, 332:7 (2001), 601-06. CrossRef
    13. P. Auscher, A. McIntosh, and A. Nahmod, “Holomorphic functional calculi of operators, quadratic estimates and interpolation,-Indiana Univ. Math. J., 46:2 (1997), 375-03. CrossRef
    14. P. Auscher, S. Hofmann, A. McIntosch, and P. Tchamitchian, “The Kato square root problem for higher order elliptic operators and systems on ?sup class="a-plus-plus">n,-J. Evol. Equ., 1:4 (2001), 361-85. CrossRef
    15. P. Auscher and P. Tchamitchian, “Square root problem for divergence operators and related topics,-Astérisque, 249 (1998), 1-71.
    16. P. Auscher and P. Tchamitchian, “Square roots of elliptic second order divergence operators on strongly Lipschitz domains: / L 2 theory,-J. Anal. Math., 90 (2003), 1-2. CrossRef
    17. P. Auscher and P. Tchamitchian, “Square roots of elliptic second order divergence operators on strongly Lipschitz domains: / L p theory,-Math. Ann., 320:3 (2001), 577-23. CrossRef
    18. A. Axelsson, S. Keith, and A. McIntosh, “The Kato square root problem for mixed boundary value problems,-J. London Math. Soc., 74:1 (2006), 113-30. CrossRef
    19. J. Bergh and J. L?fstr?m, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1976. CrossRef
    20. S. Blunck and P. Kunstmann, “Calderón-Zygmund theory for non-integral operators and the / H ?/sup> functional calculus,-Rev. Mat. Iberoamericana, 19:3 (2003), 919-42. CrossRef
    21. A. F. M. ter Elst and D. W. Robinson, “On Kato’s square root problem,-Hokkaido Math. J., 26:2 (1997), 365-76.
    22. J. Griepentrog, K. Gr?ger, H.-Ch. Kaiser, and J. Rehberg, “Interpolation for function spaces related to mixed boundary value problems,-Math. Nachr., 241 (2002), 110-20. CrossRef
    23. D. Grisvard, “Caractérisation de quelques espaces d’interpolation,-Arc. Rational Mech. Anal., 25 (1967), 40-3. CrossRef
    24. M. Haase, The Functional Calculus for Sectorial Operators, Birkh?user, Basel, 2006. CrossRef
    25. S. Hoffmann, “A short course on the Kato problem,-Contemp. Math., 289 (2001), 61-7. CrossRef
    26. L. H?rmander, Linear Partial Differential Operators, Academic Press, New York, 1963. CrossRef
    27. T. Hyt?nen, A. McIntosh, and P. Portal, “Kato’s square root problem in Banach spaces,-J. Funct. Anal., 254:3 (2008), 675-26. CrossRef
    28. S. Janson, P. Nilsson, and J. Peetre, “Notes on Wolff’s note on interpolation spaces,-Proc. London Math. Soc. (3), 48:2 (1984), 283-99. CrossRef
    29. T. Kato, “Fractional powers of dissipative operators,-J. Math. Soc. Japan, 13 (1961), 246-74. CrossRef
    30. T. Kato, “Fractional powers of dissipative operators, II,-J. Math. Soc. Japan, 14 (1962), 242-48. CrossRef
    31. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1966. CrossRef
    32. H. Komatsu, “Fractional powers of operators,-Pacif. J. Math., 19 (1966), 285-46. CrossRef
    33. M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik, and P. E. Sobolevskii, Integral Operators in Spaces of Integrable Functions [in Russian], Nauka, Moscow, 1966.
    34. J. L. Lions, équations différentielles operationelles et problèmes aux limites, Springer-Verlag, Berlin etc., 1961.
    35. J. L. Lions, “Espaces d’interpolation et domaines de puissances fractionaires d’ope?ateurs,-J. Math. Soc. Japan, 14 (1962), 233-41. CrossRef
    36. J.-L. Lions and E. Magenes, Problèmes aux limites non homogenes et applications, vol. 1, Dunod, Paris, 1968.
    37. A. McIntosh, “On the compatibility of / A 1/2 and / A*1/2,-Proc. Amer. Math. Soc., 32:2 (1972), 430-34.
    38. A. McIntosh, “Square roots of elliptic operators,-J. Funct. Anal., 61:3 (1985), 307-27. CrossRef
    39. A. McIntosh, “Operators which have an / H ?/sup> functional calculus,-in: Miniconference on Operator Theory and Partial Differential Equations, Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14, Austral. Nat. Univ., Canberra, 1986, 210-31.
    40. A. McIntosh, The Square Root Problem for Elliptic Operators: a Survey, Lecture Notes in Math., vol. 1450, Springer-Verlag, Berlin, 1990.
    41. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univ. Press, Cambridge, UK, 2000.
    42. J. Ne?as, Les méthodes directes en théorie des equations elliptiques, Masson, Paris, 1967; Direct Methods in the Theory of Elliptic Equations, Springer-Verlag, Berlin-Heidelberg, 2012.
    43. L. Nirenberg, “Remarks on strongly elliptic partial differential equations,-Comm. Pure Appl. Math., 8 (1965), 649-75.
    44. R. T. Seeley, “Norms and domains of the complex powers / Az B,-Amer. J. Math., 93:2 (1971), 299-09. CrossRef
    45. R. T. Seeley, “Interpolation in / Lp with boundary conditions,-Studia Math., 44 (1972), 47-0.
    46. A. M. Selitskii, “The space of initial data of the 3d boundary value problem for a parabolic differential-difference equation in the one-dimensional case,-Mat. Zametki, 92:4 (2012), 636-40; English transl.: Math. Notes, 92:4 (2012), 580-84. CrossRef
    47. A. M. Selitskii, “Modeling some optical systems on the basis of a parabolic differential-difference equation,-Matem. Modelirovanie, 24:12 (2012), 38-2.
    48. R. V. Shamin, “Spaces of initial data for differential equations in a Hilbert space,-Mat. Sb., 194:9 (2003), 141-56; English transl.: Russian Acad. Sci. Sb. Math., 194:9 (2003), 1411-426. CrossRef
    49. I. Ya. Shneiberg, “Spectral properties of linear operators in interpolation families of Banach spaces,-Mat. Issled., 9:2 (1974), 214-29.
    50. A. L. Skubachevskii and R. V. Shamin, “Second-order parabolic differential-difference equations,-Dokl. Ross. Akad. Nauk, 379:5 (2001), 595-98.
    51. A. L. Skubachevskii and R. V. Shamin, “The mixed boundary value problem for parabolic differential-difference equation,-Funct. Differ. Eq., 8:3- (2001), 407-24.
    52. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland Publ. Co., Amsterdam-New York, 1978.
    53. M. I. Vishik, “On strongly elliptic systems of differential equations,-Mat. Sb., 29(71):3 (1951), 615-76.
    54. T. W. Wolff, “A note on interpolation spaces,-in: Lecture Notes in Math., vol. 918, Springer-Verlag, Berlin-New York, 1982, 199-04.
    55. A. Yagi, “Coincidence entre des espaces d’interpolation et des domaines de puissances fractionaires d’op?eateurs,-C. R. Acad. Sci. Paris, Sér. 1, 299:6 (1984), 173-76.
  • 作者单位:M. S. Agranovich (113)
    A. M. Selitskii (213)

    113. National Research University Higher School of Economics, Moscow, Russia
    213. Dorodnitsyn Computing Center, Russian Academy of Sciences, Moscow, Russia
文摘
Let Ω be a bounded Lipschitz domain in ?sup class="a-plus-plus"> n , n ?2, and let L be a second-order matrix strongly elliptic operator in Ω written in divergence form. There is a vast literature dealing with the study of domains of fractional powers of operators corresponding to various problems (beginning with the Dirichlet and Neumann problems) with homogeneous boundary conditions for the equation Lu = f, including the solution of the Kato square root problem, which arose in 1961. Mixed problems and a class of problems for higher-order systems have been covered as well. We suggest a new abstract approach to the topic, which permits one to obtain the results that we deem to be most important in a much simpler and unified way and cover new operators, namely, classical boundary operators on the Lipschitz boundary Γ = ?/em>Ω or part of it. To this end, we simultaneously consider two well-known operators associated with the boundary value problem.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700