Headspace fingerprinting and sensory evaluation to discriminate between traditional and alternative pasteurization of watermelon juice
详细信息    查看全文
  • 作者:Kemal Aganovic ; Tara Grauwet ; Claudia Siemer…
  • 关键词:Headspace fingerprinting ; Watermelon juice ; Thermal pasteurization ; Pulsed electric fields processing ; High pressure processing ; Sensory analysis
  • 刊名:European Food Research and Technology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:242
  • 期:5
  • 页码:787-803
  • 全文大小:1,357 KB
  • 参考文献:1.Silva FVM, Gibbs PA, Nunez H, Almonacid S, Simpson R, Batt CA, Tortorello ML (2014) Thermal processes|pasteurization. In: Batt CA, Tortorello ML (eds) Encyclopedia of food microbiology, 2nd edn. Academic Press, Oxford, pp 577–595
    2.Yeom HW, Streaker CB, Zhang QH, Min DB (2000) Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. J Agric Food Chem 48(10):4597–4605CrossRef
    3.Choi LH, Nielsen SS (2005) The effects of thermal and nonthermal processing methods on apple cider quality and consumer acceptability. J Food Qual 28(1):13–29CrossRef
    4.van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti PR, Eisenbrand G (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54(9):1215–1247CrossRef
    5.Knorr D (1999) Novel approaches in food-processing technology: new technologies for preserving foods and modifying function. Curr Opin Biotechnol 10(5):485–491CrossRef
    6.Clark AV, Rejimbal TR, Gomez CM (1994) Ultra-high pressure homogenization of unpasteurized juice. Google Patents
    7.Dede S, Alpas H, Bayindirli A (2007) High hydrostatic pressure treatment and storage of carrot and tomato juices: antioxidant activity and microbial safety. J Sci Food Agric 87(5):773–782CrossRef
    8.Morales-de la Pena M, Salvia-Trujillo L, Rojas-Graü MA, Martin-Belloso O (2011) Changes on phenolic and carotenoid composition of high intensity pulsed electric field and thermally treated fruit juice-soymilk beverages during refrigerated storage. Food Chem 129(3):982–990CrossRef
    9.Zenker M, Heinz V, Knorr D (2003) Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. J Food Prot 66(9):1642–1649
    10.Vasantha Rupasinghe HP, Yu LJ (2012) Emerging preservation methods for fruit juices and beverages. In: El-Samragy Y (ed) Food additive. In-Tech. doi:10.​5772/​32148 . http://​www.​intechopen.​com/​books/​food-additive/​emerging-preservationmeth​ods-3-for-fruit-juices-and-beverages (ISBN 978-953-51-0067-6)
    11.Giovannucci E (2002) A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer. Exp Biol Med (Maywood) 227(10):852–859
    12.Edwards AJ, Vinyard BT, Wiley ER, Brown ED, Collins JK, Perkins-Veazie P, Baker RA, Clevidence BA (2003) Consumption of watermelon juice increases plasma concentrations of lycopene and β-carotene in humans. J Nutr 133(4):1043–1050
    13.Knorr D, Geulen M, Grahl T, Sitzmann W (1994) Food application of high electric field pulses. Trends Food Sci Technol 5(3):71–75CrossRef
    14.Toepfl S, Mathys A, Heinz V, Knorr D (2006) Review: Potential of high hydrostatic pressure and pulsed electric fields for energy efficient and environmentally friendly food processing. Food Rev Int 22(4):405–423CrossRef
    15.Aguilar-Rosas SF, Ballinas-Casarrubias ML, Nevarez-Moorillon GV, Martin-Belloso O, Ortega-Rivas E (2007) Thermal and pulsed electric fields pasteurization of apple juice: effects on physicochemical properties and flavour compounds. J Food Eng 83(1):41–46CrossRef
    16.Toepfl S, Heinz V, Knorr D (2007) High intensity pulsed electric fields applied for food preservation. Chem Eng Process 46(6):537–546CrossRef
    17.Heinz V, Buckow R (2009) Food preservation by high pressure. Journal für Verbraucherschutz und Lebensmittelsicherheit 5(1):73–81CrossRef
    18.Grauwet T, Vervoort L, Colle I, Van Loey A, Hendrickx M (2014) From fingerprinting to kinetics in evaluating food quality changes. Trends Biotechnol 32(3):125–131. doi:10.​1016/​j.​tibtech.​2014.​01.​002 CrossRef
    19.Mosqueda-Melgar J, Raybaudi-Massilia RM, Martin-Belloso O (2007) Influence of treatment time and pulse frequency on Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juices treated by pulsed electric fields. Int J Food Microbiol 117(2):192–200CrossRef
    20.Mosqueda-Melgar J, Raybaudi-Massilia RM, Martin-Belloso O (2008) Combination of high-intensity pulsed electric fields with natural antimicrobials to inactivate pathogenic microorganisms and extend the shelf-life of melon and watermelon juices. Food Microbiol 25(3):479–491CrossRef
    21.Oms-Oliu G, Odriozola-Serrano I, Soliva-Fortuny R, Martin-Belloso O (2009) Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chem 115(4):1312–1319CrossRef
    22.Aguilo-Aguayo I, Montero-Calderon M, Soliva-Fortuny R, Martin-Belloso O (2010) Changes on flavor compounds throughout cold storage of watermelon juice processed by high-intensity pulsed electric fields or heat. J Food Eng 100(1):43–49CrossRef
    23.Aguilo-Aguayo I, Soliva-Fortuny R, Martin-Belloso O (2010) Color and viscosity of watermelon juice treated by high-intensity pulsed electric fields or heat. Innov Food Sci Emerg Technol 11(2):299–305CrossRef
    24.Aguilo-Aguayo I, Soliva-Fortuny R, Martin-Belloso O (2009) Avoiding non-enzymatic browning by high-intensity pulsed electric fields in strawberry, tomato and watermelon juices. J Food Eng 92(1):37–43CrossRef
    25.Liu Y, Zhao XY, Zou L, Hu XS (2013) Effect of high hydrostatic pressure on overall quality parameters of watermelon juice. Food Sci Technol Int 19(3):197–207. doi:10.​1177/​1082013212442194​ CrossRef
    26.Zhang C, Trierweiler B, Li W, Butz P, Xu Y, Rüfer CE, Ma Y, Zhao X (2011) Comparison of thermal, ultraviolet-c, and high pressure treatments on quality parameters of watermelon juice. Food Chem 126(1):254–260CrossRef
    27.Kessler HG (2006) Lebensmittel- und Bioverfahrenstechnik -Molkereitechnologie. Verlag A Kessler, München
    28.Vervoort L, Grauwet T, Kebede BT, Van der Plancken I, Timmermans R, Hendrickx M, Van Loey A (2012) Headspace fingerprinting as an untargeted approach to compare novel and traditional processing technologies: a case-study on orange juice pasteurisation. Food Chem 134(4):2303–2312CrossRef
    29.Kebede BT, Grauwet T, Tabilo-Munizaga G, Palmers S, Vervoort L, Hendrickx M, Van Loey A (2013) Headspace components that discriminate between thermal and high pressure high temperature treated green vegetables: identification and linkage to possible process-induced chemical changes. Food Chem 141(3):1603–1613CrossRef
    30.Oms-Oliu G, Odriozola-Serrano I, Martin-Belloso O (2013) Metabolomics for assessing safety and quality of plant-derived food. Food Res Int 54(1):1172–1183CrossRef
    31.NACMCF NACoMCfF (2006) Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. J Food Prot 69(5):1190–1216
    32.FDA (2004) Guidance for industry: juice HACCP hazards and controls guidance first edition; final guidance. US Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Applied Nutrition (CFSAN) http://​www.​fdagov/​Food/​GuidanceRegulati​on/​GuidanceDocument​sRegulatoryInfor​mation/​Juice/​ucm072557.​htm
    33.Del Rosariao BA, Beuchat LR (1995) Survival and growth of enterohemorrhagic Escherichia coli O157:H7 in cantaloupe and watermelon. J Food Prot 58:105–107
    34.Penteado AL, Leitao MFF (2004) Growth of Listeria monocytogenes in melon, watermelon and papaya pulps. Int J Food Microbiol 92(1):89–94CrossRef
    35.Grahl T, Märkl H (1996) Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol 45(1):148–157CrossRef
    36.Sale AJH, Hamilton WA (1967) Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochim Biophy Acta-Gen Subj 148(3):781–788CrossRef
    37.Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14(11):881–899CrossRef
    38.Min S, Jin ZT, Min SK, Yeom H, Zhang QH (2003) Commercial-scale pulsed electric field processing of orange juice. J Food Sci 68(4):1265–1271CrossRef
    39.Min S, Jin ZT, Zhang QH (2003) Commercial scale pulsed electric field processing of tomato juice. J Agric Food Chem 51(11):3338–3344CrossRef
    40.Toepfl S (2011) Pulsed electric field food treatment—scale up from lab to industrial scale. Procedia Food Sci 1:776–779CrossRef
    41.Saldana G, Puertolas E, Monfort S, Raso J, Alvarez I (2011) Defining treatment conditions for pulsed electric field pasteurization of apple juice. Int J Food Microbiol 151(1):29–35CrossRef
    42.Farkas DF, Hoover DG (2000) High pressure processing (kinetics of microbial inactivation for alternative food processing technologies). J Food Sci 65(8):S47CrossRef
    43.Farr D (1990) High pressure technology in the food industry. Trends Food Sci Technol 1:14–16CrossRef
    44.Simpson RK, Gilmour A (1997) The effect of high hydrostatic pressure on the activity of intracellular enzymes of Listeria monocytogenes. Lett Appl Microbiol 25(1):48–53CrossRef
    45.Tonello-Samson C (2014) Advances in high pressure processing: case studies. In: IFT Annual Meeting & Food Expo, New Orleans, LA, USA
    46.Tonello-Samson C (2013) Personal communication. Hiperbaric, Spain
    47.Yajima I, Sakakibara H, Ide J, Yanai T, Hayashi K (1985) Volatile flavor components of watermelon (Citrullus vulgaris). Agric Biol Chem 49(11):3145–3150CrossRef
    48.Beaulieu JC, Lea JM (2006) Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction. J Agric Food Chem 54(20):7789–7793CrossRef
    49.Verzera A, Dima G, Tripodi G, Ziino M, Lanza CM, Mazzaglia A (2011) Fast quantitative determination of aroma volatile constituents in melon fruits by headspace-solid-phase microextraction and gas chromatography-mass spectrometry. Food Anal Methods 4(2):141–149CrossRef
    50.Christensen LP, Edelenbos M, Kreutzmann S (2007) Fruits and vegetables of moderate climate. In: Berger PDRG (ed) Flavours and fragrances, chemistry, bioprocessing and sustainability. Springer, Berlin, pp 135–187. ISBN 978-3-540-49339-6CrossRef
    51.Aganovic K, Grauwet T, Kebede BT, Toepfl S, Heinz V, Hendrickx M, Van Loey A (2014) Impact of different large scale pasteurisation technologies and refrigerated storage on the headspace fingerprint of tomato juice. Innov Food Sci Emerg Technol 26:431–444CrossRef
    52.Kemp TR (1975) Identification of some volatile compounds from Citrullus vulgaris. Phytochemistry 14(12):2637–2638CrossRef
    53.Pino JA, Marbot R, Aguero J (2003) Volatile components of watermelon (Citrullus Ianatus [Thunb.] Matsum. et Nakai) fruit. J Essent Oil Res 15(6):379–380CrossRef
    54.Teranishi R, Wick E, Hornstein I, Takeoka G (1999) Flavor chemistry of vegetables. Flavor chemistry. Springer, US, pp 287–304CrossRef
    55.Liu C, Zhang H, Dai Z, Liu X, Liu Y, Deng X, Chen F, Xu J (2012) Volatile chemical and carotenoid profiles in watermelons [Citrullus vulgaris (Thunb.) Schrad (Cucurbitaceae)] with different flesh colors. Food Sci Biotechnol 21(2):531–541CrossRef
    56.Xisto ALRP, Boas EVdBV, Nunes EE, Federal BMVB, Guerreiro MC (2012) Volatile profile and physical, chemical, and biochemical changes in fresh cut watermelon during storage. Food Sci Technol (Campinas) 32:173–178CrossRef
    57.Amaro AL, Beaulieu JC, Grimm CC, Stein RE, Almeida DPF (2012) Effect of oxygen on aroma volatiles and quality of fresh-cut cantaloupe and honeydew melons. Food Chem 130(1):49–57CrossRef
    58.Luning PA, Carey AT, Roozen JP, Wichers HJ (1995) Characterization and occurrence of lipoxygenase in bell peppers at different ripening stages in relation to the formation of volatile flavor compounds. J Agric Food Chem 43(6):1493–1500CrossRef
    59.Hatanaka A (1993) The biogeneration of green odour by green leaves. Phytochemistry 34(5):1201–1218CrossRef
    60.Chi-Tang H, Qinyun C (1994) Lipids in food flavors, In: Lipids in Food Flavors, vol 558. American Chemical Society, Washington, DC, pp 2–14
    61.Schieberle P, Grosch W (1981) Model experiments about the formation of volatile carbonyl compounds. J Am Oil Chem Soc 58(5):602–607CrossRef
    62.Anthon GE, Barrett DM (2003) Thermal inactivation of lipoxygenase and hydroperoxytrienoic acid lyase in tomatoes. Food Chem 81(2):275–279CrossRef
    63.Sieso V, Crouzet J (1977) Tomato volatile components: effect of processing. Food Chem 2(4):241–252CrossRef
    64.Marković K, Vahčić N, Ganić KK, Banović M (2007) Aroma volatiles of tomatoes and tomato products evaluated by solid-phase microextraction. Flavour Fragr J 22(5):395–400CrossRef
    65.Kazeniac SJ, Hall RM (1970) Flavor chemistry of tomato volatiles. J Food Sci 35(5):519–530CrossRef
    66.Holden JM, Eldridge AL, Beecher GR, Marilyn Buzzard I, Bhagwat S, Davis CS, Douglass LW, Gebhardt S, Haytowitz D, Schakel S (1999) Carotenoid content of U.S. foods: an update of the database. J Food Compos Anal 12(3):169–196CrossRef
    67.Huor SS, Ahmed EM, Carter RD (1980) Concentration of watermelon juice. J Food Sci 45(3):718–719CrossRef
    68.Winterhalter P, Rouseff R (2001) Carotenoid-derived aroma compounds: an introduction. In: Carotenoid-derived aroma compounds, vol 802. ACS symposium series. American Chemical Society, Washington, DC, pp 1–17
    69.Lewinsohn E, Sitrit Y, Bar E, Azulay Y, Ibdah M, Meir A, Yosef E, Zamir D, Tadmor Y (2005) Not just colors—carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends Food Sci Technol 16(9):407–415CrossRef
    70.Cole ER, Kapur NS (1957) The stability of lycopene. I.-Degradation by oxygen. J Sci Food Agric 8(6):360–365CrossRef
    71.Wolken WAM, ten Have R, van der Werf MJ (2000) Amino acid-catalyzed conversion of citral: cis-trans Isomerization and its conversion into 6-methyl-5-hepten-2-one and acetaldehyde. J Agric Food Chem 48(11):5401–5405CrossRef
    72.Tangwongchai R, Ledward DA, Ames JM (2000) Effect of high-pressure treatment on lipoxygenase activity. J Agric Food Chem 48(7):2896–2902CrossRef
    73.Schreier P, Drawert F, Junker A (1977) Ueber die quantitative Zusammensetzung natuerlicher und technologisch veraenderter pflanzlicher Aromen. IV. Enzymatische und thermische Reaktionsprodukte bei der Verarbeitung von Tomaten. Z Lebensm Unters-Forsch 165:23–27CrossRef
    74.Condurso C, Verzera A, Dima G, Tripodi G, Crino P, Paratore A, Romano D (2012) Effects of different rootstocks on aroma volatile compounds and carotenoid content of melon fruits. Sci Hortic 148:9–16CrossRef
    75.Ortiz-Serrano P, Gil JV (2007) Quantitation of free and glycosidically bound volatiles in and effect of glycosidase addition on three tomato varieties (Solanum lycopersicum L.). J Agric Food Chem 55(22):9170–9176CrossRef
    76.Servili M, Selvaggini R, Begliomini AL, Montedoro GF (1998) Effect of thermal treatment in the headspace volatile compounds of tomato juice. In: Contis ET, Ho C-T, Mussinan CJ, Parliment TH, Shahidi F, Spanier AM (eds) Developments in food science. Food Flavors: Formation, Analysis and Packaging Influences, Proceedings of the 9th International Flavor Conference, The George Charalambous Memorial Symposium, Limnos, Greece, 1–4 July 1997, vol 40. Elsevier, pp 315–330
    77.Buttery RG, Teranishi R, Flath RA, Ling LC (1990) Identification of additional tomato paste volatiles. J Agric Food Chem 38(3):792–795CrossRef
    78.Belitz H-D, Grosch W, Schieberle P (2009) Aroma compounds. Food Chemistry. Springer, Berlin, pp 340–402
    79.Krumbein A, Peters P, Brueckner B (2004) Flavour compounds and a quantitative descriptive analysis of tomatoes (Lycopersicon esculentum Mill.) of different cultivars in short-term storage. Postharvest Biol Technol 32(1):15–28CrossRef
    80.Smit BA, Engels WJ, Smit G (2009) Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods. Appl Microbiol Biotechnol 81(6):987–999CrossRef
    81.Baldwin EA, Goodner K, Plotto A, Pritchett K, Einstein M (2004) Effect of volatiles and their concentration on perception of tomato descriptors. J Food Sci 69(8):S310–S318CrossRef
    82.Baldwin EA, Scott JW, Shewmaker CK, Schuch W (2000) Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. HortScience 35(6):1013–1022
    83.Buttery RG, Teranishi R, Ling LC, Turnbaugh JG (1990) Quantitative and sensory studies on tomato paste volatiles. J Agric Food Chem 38(1):336–340CrossRef
    84.Krumbein A, Auerswald H (1998) Characterization of aroma volatiles in tomatoes by sensory analyses. Food 42(06):395–399
    85.Sheldon RM, Lindsay RC, Libbey LM, Morgan ME (1971) Chemical nature of malty flavor and aroma produced by Streptococcus lactis var. maltigenes. Appl Microbiol 22(3):263–266
    86.Cosmai L, Summo C, Caponio F, Paradiso VM, Gomes T (2013) Influence of the thermal stabilization process on the volatile profile of canned tomato-based food. J Food Sci 78(12):C1865–C1870CrossRef
    87.Kebede BT, Grauwet T, Mutsokoti L, Palmers S, Vervoort L, Hendrickx M, Van Loey A (2014) Comparing the impact of high pressure high temperature and thermal sterilization on the volatile fingerprint of onion, potato, pumpkin and red beet. Food Res Int 56:218–225CrossRef
    88.Kebede BT, Grauwet T, Palmers S, Vervoort L, Carle R, Hendrickx M, Van Loey A (2013) Effect of high pressure high temperature processing on the volatile fraction of differently coloured carrots. Food Chem 153:340–352CrossRef
  • 作者单位:Kemal Aganovic (1)
    Tara Grauwet (2)
    Claudia Siemer (1)
    Stefan Toepfl (1)
    Volker Heinz (1)
    Marc Hendrickx (2)
    Ann Van Loey (2)

    1. German Institute of Food Technologies (DIL) e.V., Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany
    2. Laboratory of Food Technology, Leuven Food Science and Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M2S), Katholieke Universiteit Leuven, Kasteelpark Arenberg 22 Box 2457, 3001, Heverlee, Belgium
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Food Science
    Analytical Chemistry
    Biotechnology
    Agriculture
    Forestry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1438-2385
文摘
The watermelon juice was processed by thermal and large-scale alternative pasteurization technologies, pulsed electric fields (PEF) and high pressure processing (HPP). The watermelon juice was compared and evaluated immediately after the treatment as well as a function of shelf-life. As a basis for the comparison, microbial inactivation was chosen. The watermelon juice quality evaluation was performed by a multivariate quality comparison (headspace fingerprinting), studying volatile fractions of the juice. Control and pasteurized juice was evaluated in terms of sensory at the beginning and the end of the shelf-life. Most of the selected markers in control juice were lower in concentration compared to processed classes. Majority of the compounds detected in higher concentration after processing were C6–C9 carbonyls. Their formation is linked to oxidation of fatty acids. Few degradation products of lycopene have been observed in PEF and HPP class. Compounds selected in higher concentration in thermal class were products linked to the Maillard reaction and Strecker degradation products. All compounds detected in lower concentration in thermal class at day-12 compared to PEF and HPP were linked to lycopene degradation. According to the sensory evaluation, a clear differentiation of control from processed samples as well as among processed samples only after the treatment and at the end of the shelf-life was possible.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700