Defects production and mechanical properties of typical metal engineering materials under neutron irradiation
详细信息    查看全文
  • 作者:Jian Liu ; XiaoBin Tang ; FeiDa Chen ; Hai Huang…
  • 关键词:Monte Carlo ; molecular dynamics ; neutron irradiation ; displacement damage rate ; mechanical properties
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:58
  • 期:10
  • 页码:1753-1759
  • 全文大小:869 KB
  • 参考文献:1.Phythian W J, Stoller R E, Foreman A J E, et al. A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution. J Nucl Mater, 1995; 223: 245-61CrossRef
    2.Yang Y H, Tang X B, Chen F D, et al. A molecular dynamics-based comparison of defect production in collision cascades during the bombardment of iron with different ions. Sci China Tech Sci, 2014; 57: 29-4CrossRef
    3.Grimes R W, Nuttall W J. Generating the option of a two-stage nuclear renaissance. Science, 2010; 329: 799-03CrossRef
    4.Grimes R W, Konings R J M, Edwards L. Greater tolerance for nuclear materials. Nat Mater, 2008; 7: 683-85CrossRef
    5.Liu X Y, Uberuaga B P, Demkowicz M J, et al. Mechanism for recombination of radiation-induced point defects at interphase bounda ries. Phys Rev B, 2012, 85: 012103CrossRef
    6.O’Brien M H, Loughlin M J. Displacement damage quantification in future fusion systems. Fusion Eng Des, 2007; 82: 2536-542CrossRef
    7.Huang H, Tang X, Chen F, et al. Radiation damage resistance and interface stability of copper–graphene nanolayered composite. J Nucl Mater, 2015; 460: 16-2CrossRef
    8.Chen F, Tang X, Yang Y, et al. Investigation of structural stability and magnetic properties of Fe/Ni multilayers irradiated by 300 keV Fe10+. J Nucl Mater, 2014; 452: 31-6CrossRef
    9.Alamo A, Bertin J L, Shamardin V K, et al. Mechanical properties of 9Cr martensitic steels and ODS-FeCr alloys after neutron irradiation at 325 °C up to 42 dpa. J Nucl Mater, 2007; 367: 54-9CrossRef
    10.Nagai Y, Tang Z, Hassegawa M, et al. Irradiation-induced Cu aggregations in Fe: An origin of embrittlement of reactor pressure vessel steels. Phys Rev B, 2001, 63: 134110CrossRef
    11.Nishiyama Y, Onizawa K, Suzuki M, et al. Effects of neutron-irradiation- induced intergranular phosphorus segregation and hardening on embrittlement in reactor pressure vessel steels. Acta Mater, 2008; 56: 4510-521CrossRef
    12.Garner F A, Toloczko M B, Sencer B H. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. J Nucl Mater, 2000; 276: 123-42CrossRef
    13.Konobeev Y V, Dvoriashin A M, Porollo S I, et al. Swelling and microstructure of pure Fe and Fe–Cr alloys after neutron irradiation to~26 dpa at 400 °C. J Nucl Mater, 2006; 355: 124-30CrossRef
    14.Gilbert M R, Dudarev S L, Zheng S, et al. An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation. Nucl Fusion, 2012, 52: 083019CrossRef
    15.Barashenkov V S. Monte Carlo simulation of ionization and nuclear processes initiated by hadron and ion beams in media. Comput PhysCommun, 2000; 126: 28-1MATH
    16.Osetsky Y N, Bacon D J. Atomic-scale modelling of primary damage and properties of radiation defects in metals. Nucl Instrum Meth B, 2003; 202: 31-3CrossRef
    17.Osetsky Y N, Bacon D J, Serra A, et al. Stability and mobility of defect clusters and dislocation loops in metals. J Nucl Mater, 2000; 276: 65-7CrossRef
    18.Caturla M J, Soneda N, Alonso E, et al. Comparative study of radiation damage accumulation in Cu and Fe. J Nucl Mater, 2000; 276: 13-1CrossRef
    19.Agostinelli S, Allison J, Amako K, et al. GEANT4—A simulation toolkit. Nucl Instrum Meth A, 2003; 506: 250-03CrossRef
    20.Norgett M J, Robinson M T, Torrens I M. A proposed method of calculating displacement dose rates. Nucl Eng Des, 1975; 33: 50-4CrossRef
    21.Kinchin G H, Pease R S. The displacement of atoms in solids by radiation. Rep Prog Phys, 1955, 18: 1CrossRef
    22.Ackland G J, Bacon D J, Calder A F, et al. Computer simulation of point defect properties in dilute Fe–Cu alloy using a many-body interatomic potential. Philos Mag, 1997; 75: 713-32CrossRef
    23.Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys, 1980; 72: 2384-393CrossRef
    24.Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys, 1984; 81: 511-19CrossRef
    25.Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984; 81: 3684-690CrossRef
    26.Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995; 117: 1-9MATH CrossRef
    27.Wu H A. Molecular dynamics study on mechanics of metal nanowire. Mech Res Commun, 2006; 33: 9-6MATH CrossRef
  • 作者单位:Jian Liu (1)
    XiaoBin Tang (1) (2)
    FeiDa Chen (1)
    Hai Huang (1)
    Huan Li (1)
    YaHui Yang (1)

    1. Department of Nuclear Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
    2. Jiangsu Key Laboratory of Nuclear Energy Equipment Materials Engineering, Nanjing, 210016, China
  • 刊物类别:Engineering
  • 刊物主题:Chinese Library of Science
    Engineering, general
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1900
文摘
Maintaining the safety and reliability of nuclear engineering materials under a neutron irradiation environment is significant. Atomic-scale simulations are conducted to investigate the mechanism of irradiation-induced vacancy formation in CLAM, F82H and α-Fe with different neutron energies and objective laws of the effect of vacancy concentration on mechanical properties of α-Fe. Damage of these typical metal engineering materials caused by neutrons is mainly displacement damage, while the displacement damage rate and the non-ionizing effect of neutrons decrease with the increase of neutron energy. The elastic modulus, yield strength, and ultimate strength of α-Fe are in the order of magnitude of GPa. However, the elastic modulus is not constant but decreases with the increase of strain at the elastic deformation stage. The ultimate strength reaches its maximum value when vacancy concentration in α-Fe is 0.2%. On this basis, decreasing or increasing the number of vacancies reduces the ultimate strength. Keywords Monte Carlo molecular dynamics neutron irradiation displacement damage rate mechanical properties

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700