Evidence from cosmic ray exposure (CRE) dating for the existence of a pre-Minoan caldera on Santorini, Greece
详细信息    查看全文
  • 作者:C. D. Athanassas ; D. L. Bourlès ; R. Braucher ; T. H. Druitt…
  • 关键词:In situ cosmogenic 36Cl ; Caldera ; Paleogeography ; Minoan eruption
  • 刊名:Bulletin of Volcanology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:78
  • 期:5
  • 全文大小:1,617 KB
  • 参考文献:Anadón P, Canet C, Friedrich W (2013) Aragonite stromatolitic buildups from Santorini (Aegean Sea, Greece): geochemical and palaeontological constraints of the caldera palaeoenvironment prior to the Minoan eruption (ca 3600 year bp). Sedimentology 60:1128–1155CrossRef
    Benedetti L, Finkel R, Papanastassiou D, King G, Armijo R, Ryerson FJ, Farber D, Flerit F (2002) Postglacial slip history of the Sparta fault (Greece) determined by Cl-36 cosmogenic dating: evidence for non-periodic earthquakes. Geophys Res Lett 29:8701–8704CrossRef
    Blard PH, Lavé J, Pik R, Quidelleur X, Bourlés D, Kieffer G (2005) Fossil cosmogenic 3He record from K–Ar dated basaltic flows of Mount Etna volcano (Sicily, 38 °N): evaluation of a new paleoaltimeter. Earth Planet Sci Lett 236:613–631CrossRef
    Bond A, Sparks RSJ (1976) The Minoan eruption of Santorini, Greece. J Geol Soc Lond 132:1–16CrossRef
    Braucher R, Del Castillo P, Siame L, Hidy AJ, Bourlès DL (2009) Determination of both exposure time and denudation rate from an in situ-produced 10Be depth profile: a mathematical proof of uniqueness. Model sensitivity and applications to natural cases. Quat Geochronol 4:56–67CrossRef
    Braucher R, Merchel S, Borgomano J, Bourlès DL (2011) Production of cosmogenic radionuclides at great depth: a multi element approach. Earth Planet Sci Lett 309:1–9CrossRef
    Budetta G, Condarelli D, Fytikas M, Kolios N, Pascale G, Rapolla A, Pinna E (1984) Geophysical prospecting on the Santorini Islands. Bull Volcanol 47:447–465CrossRef
    Cadoux A, Scaillet B, Druitt TH, Deloule E (2014) Magma storage conditions of large Plinian eruptions of Santorini volcano (Greece). J Petrol 55:1129–1171CrossRef
    Croff Bell KL, Carey SN, Nomikou P, Sigurdsson H, Sakellariou D (2013) Submarine evidence of a debris avalanche deposit on the eastern slope of Santorini volcano, Greece. Tectonophysics 597–598:147–160CrossRef
    Davis RJ, Schaeffer OA (1955) Chlorine-36 in nature. Ann N Y Acad Sci 62:105–122CrossRef
    Doumas C (1990) Archaeological observations at Akrotiri relating to the volcanic destruction. In: Hardy DA et al. (eds) Thera and the Aegean World III/3, p 48–50
    Druitt TH (2014) New insights into the initiation and venting of the Bronze-Age eruption of Santorini (Greece), from component analysis. Bull Volcanol 76:794. doi:10.​1007/​s00445-014-0794-x CrossRef
    Druitt TH, Francaviglia V (1990) An ancient caldera cliff line at Phira, and its significance for the topography and geology of pre-Minoan Santorini. In: Hardy DA et al (eds) Thera and the Aegean world III/2, p 362–376
    Druitt TH, Francaviglia V (1992) Caldera formation on Santorini and the physiography of the islands in the late Bronze Age. Bull Volcanol 54:484–493CrossRef
    Druitt TH, Edwards L, Mellors R, Pyle DM, Sparks RSJ, Lanphere M, Davies M, Barriero B (1999) Santorini volcano. Geol Soc Lond Mem 19, 165pp
    Dunai T (2010) Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences. Cambridge University Press, 187pp
    Dunai T, Stuart FM (2009) Reporting of cosmogenic nuclide data for exposure age and erosion rate determinations. Quat Geochronol 4:437–440CrossRef
    Eriksen U, Friedrich WL, Buchardt B, Tauber H and Thomsen MS (1990) The Stronghyle caldera: geological, palaeotological and stable isotope evidence from radiocarbon dated stromatolites from Santorini. In: Hardy DA et al (eds) Thera and the Aegean World III/2, p 139–150
    Fabbro GN, Druitt TH, Scaillet S (2013) Evolution of the crustal magma plumbing system during the build-up to the 22-ka caldera-forming eruption of Santorini (Greece). Bull Volcanol 75:767. doi:10.​1007/​s00445-013-0767-5 CrossRef
    Fabryka-Martin JT (1988) Production of radionuclides in the earth and their hydrogeologic significance, with emphasis on chlorine-36 and iodine-129. pp 400 Ph.D. thesis, University of Arizona, USA
    Fifield LK, Ophel TR, Allan GL, Bird JR, Davie RF (1990) Accelerator mass spectrometry at the Australian National University’s 14UD accelerator: experience and developments. Nucl Instrum Meth Phys Res Sect B52:233–237CrossRef
    Friedrich WL, Eriksen U, Tauber H, Heinemeier J, Rud N, Thomsen MS, Buchardt B (1988) Existence of a water-filled caldera prior to the Minoan eruption of Santorini, Greece. Naturwissenschaften 75:567–569CrossRef
    Friedrich WL, Kromer B, Friedrich M, Heinemeier J, Pfeiffer T, Talamo S (2006) Santorini eruption radiocarbon dated to 1627–1600 B.C. Science 312:548CrossRef
    Fytikas M, Karydakis G, Kavourdis T, Kolios N and Vougioukalakis G (1990) Geothermal research on Santorini. In: Hardy DA et al. (eds) Thera and the Aegean World III/2,241–249
    Gertisser R, Preece K, Keller J (2009) The Plinian Lower Pumice 2 eruption, Santorini, Greece: magma evolution and volatile behaviour. J. Volcanol. Geotherm Res 186:387–406
    Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560CrossRef
    Heiken G, McCoy F (1984) Caldera development during the Minoan eruption, Thira, Cyclades, Greece. J Geophys Res 89(B10):8841–8862
    Johnston EN, Sparks RSJ, Phillips JC, Carey S (2014) Revised estimates for the volume of the Late Bronze Age Minoan eruption, Santorini, Greece. J Geol Soc Lond 171:583–590CrossRef
    Johnston EN, Sparks RSJ, Nomikou P, Livanos I, Carey S, Phillips JC, Sigurdsson H (2015) Stratigraphic relations of Santorini’s intracaldera fill and implications for the rate of post-caldera volcanism. J Geol Soc. doi:10.​1144/​jgs2013-114
    Lagios E, Sakkas V, Novali F, Belotti F, Feretti A, Vlachou K, Dietrich V (2013) SqueeSAR™ and GPS ground deformation monitoring of Santorini Volcano (1992–2012): tectonic implications. Tectonophysics 594:38–59CrossRef
    Lal D (1991) Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439CrossRef
    Licciardi JM, Denoncourt CL, Finkel RC (2008) Cosmogenic 36Cl production rates from Ca spallation in Iceland. Earth Planet Sci Lett 267:365–377CrossRef
    Marinatos S (1939) The volcanic destruction of Minoan Crete. Antiquity 13:425–439CrossRef
    Marrero SM, Phillips FM, Caffee MW, Gosse JC (2016) CRONUS-Earth cosmogenic 36Cl calibration. Quat Geochronol 31:199–219CrossRef
    Nomikou P, Carey S, Papanikolaou D, Croff Bell K, Sakellariou D, Alexandri M, Bejelou K (2012) Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece. Glob Planet Chang 90–91:135–151. doi:10.​1016/​j.​gloplacha.​2012.​01.​001 CrossRef
    Nomikou P, Papanikolaou D, Alexandri M, Sakellariou D, Rousakis G (2013) Submarine volcanoes along the Aegean volcanic arc. Tectonophysics 19:123–146CrossRef
    Nomikou P, Parks MM, Papanikolaou D, Pyle D, Mather TA, Carey S, Watts AB, Paulatto M, Kalnins ML, Livanos I, Bejelou K, Simou E, Perros I (2014) The emergence and growth of a submarine volcano: the Kameni islands, Santorini (Greece). Geogr Res (J Inst Aust Geogr) 1–2:8–18
    Papageorgiou E, Tzanis A, Sotiropoulos P, Lagios E (2010) DGPS and magnetotelluric constraints on the contemporary tectonics of the Santorini volcanic complex, Greece. Bulletin of the Geological Society of Greece XLLIII, p 344–356
    Perissoratis C (1990) Marine geological research on Santorini: preliminary results. In Hardy DA et al. (eds) Thera and the Aegean World III/2, p 305–311
    Perissoratis C (1995) The Santorini volcanic complex and its relation to the stratigraphy and structure of the Aegean arc, Greece. Mar Geol 128:37–58CrossRef
    Phillips FM (2003) Cosmogenic 36Cl ages of quaternary basalt flows in the Mojave Desert, California, USA. Geomorphology 53:199–208CrossRef
    Phillips FM, Stone WD, Fabryka-Martin J (2001). An improved approach to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere interface. Chemical Geology 175:689–701
    Phillips FM, Leavy BD, Jannik NO, Elmore D, Kubik PW (1986) The accumulation of cosmogenic chlorine-36 in rocks. A method for surface exposure dating. Science 231:41–43CrossRef
    Phillips FM, Argento DC, Balco G, Caffee MW, Clem J, Dunai TJ, Finkel R, Goehering B, Gosse JC, Hudson AM, Jull AJT, Kelly MA, Kurz M, Lal D, Lifton N, Marrero SM, Nishiizumi K, Reedy RC, Schaefer J, Stone JOH, Swanson T, Zreda MG (2016) The CRONUS-Earth project: a synthesis. Quat Geochronol 31:119–154CrossRef
    Pyle DM, Elliott JR (2006) Quantitative morphology, recent evolution, and future activity of the Kameni Islands volcano, Santorini, Greece. Geosphere 2:253–268. doi:10.​1130/​GES00028.​1 CrossRef
    Sanchez G, Rolland Y, Corsini M, Braucher R, Bourlès D, Arnold M, Aumaître G (2010) Relationships between tectonics, slope instability and climate change: cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps. Geomorphology 117:1–13CrossRef
    Schimmelpfennig I, Benedetti L, Finkel R, Pik R, Blard PH, Bourlès D, Burnard P, Williams A (2009) Sources of in situ 36Cl in basaltic rocks. Implications for calibration of production rates. Quat Geochronol 4:441–461CrossRef
    Schimmelpfennig I, Benedetti L, Garreta V, Pik R, Blard PH, Burnard P, Bourlès D, Finkel R, Ammon K, Dunai T (2011) Calibration of cosmogenic 36Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38°N, Italy) and Payun. Matru (36°S, Argentina). Geochim Cosmochim Acta 75:2611–2632CrossRef
    Schimmelpfennig I, Schaefer JM, Putnam AE, Koffman T, Benedetti L, Ivy-Ochs S, Team ASTER, Schlüchter C (2014) 36Cl production rate from K-spallation in the European Alps (Chironico landslide, Switzerland). J Quat Sci 29:407–413CrossRef
    Sharma P, Kubik PW, Fehn U, Gove HE, Nishiizumi K, Elmore D (1990) Development of 36Cl standards for AMS. Nucl Instrum Methods Phys Res, Sect B 52:410–415CrossRef
    Shepard MK, Arvidson RE, Caffee M, Finkel R, Harris L (1995) Cosmogenic exposure ages of basalt flows: Lunar Crater volcanic field, Nevada. Geology 23:21–24CrossRef
    Sigurdsson H, Carey S, Alexandri M, Vougioukalakis G, Croff K, Roman C, Sakellariou D, Anagnostou C, Rousakis G, Ioakim C, Gogou A, Ballas D, Misaridis T, Nomikou P (2006) Marine investigations of Greece’s Santorini volcanic field. Eos 87(34):337–339CrossRef
    Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105/B10:23753–23759CrossRef
    Stone JO, Allan GL, Fifield LK, Cresswell RG (1996) Cosmogenic chlorine-36 from calcium spallation. Geochim Cosmochim Acta 60:679–692CrossRef
    Stone JOH, Evans JM, Fifield LK, Allan GL, Cresswell RG (1998) Cosmogenic chlorine-36 production in calcite by muons. Geochim Cosmochim Acta 62:433–454CrossRef
    Vogt S, Elmore D, Sharma P, Dunne A (1996) The 36Cl/36Cl method for determining exposure time and erosion rates of surfaces. Radiocarbon 38:122
  • 作者单位:C. D. Athanassas (1)
    D. L. Bourlès (1)
    R. Braucher (1)
    T. H. Druitt (2)
    P. Nomikou (3)
    L. Léanni (1)

    1. Aix-Marseille Université, CNRS-IRD-Collège de France, UM 34 CEREGE, Technopôle de l’Environnement Arbois-Méditerranée, BP80, 13545, Aix-en-Provence, France
    2. Laboratoire Magmas et Volcans, Université Blaise Pascal-CNRS-IRD, OPGC, 5 rue Kessler, 63038, Clermont Ferrand, France
    3. Faculty of Geology and the Geoenvironment, University of Athens, Panepistimioupolis Zografou, 15784, Athens, Greece
  • 刊物主题:Geology; Geophysics/Geodesy; Mineralogy; Sedimentology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-0819
文摘
Cosmic ray exposure (CRE) dating was performed on the caldera cliffs of Santorini with the aim of detecting cliff segments predating the Minoan eruption (17th century BCE). The methodology involved the determination of in situ-produced cosmogenic 36Cl concentration in basaltic-to-rhyodacitic whole rocks cropping out in the cliffs. After the samples were processed following the chemical protocol of 36Cl preparation for silicate rocks, 36Cl concentrations were measured by accelerator mass spectrometry (AMS). Important challenges during the implementation procedure were related to large amounts of radiogenic 36Cl, complex modeling of inherited 36Cl, and dominance of the thermal and epithermal (low-energy) neutron capture production pathway. Nevertheless, quantitative assessments on the basis of the contribution of the low-energy neutron capture pathway percent to the total production rate validated the calculated CRE dates. Current CRE ages demonstrate that an ancient caldera existed on pre-Minoan Santorini, occupying at least the northern half of the modern-day caldera.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700