Elevated N2O emission by the rice roots: based on the abundances of narG and bacterial amoA genes
详细信息    查看全文
  • 作者:Zhenxing Zhang ; Wenzhao Zhang ; Huicui Yang…
  • 关键词:N2O emission ; Flooding ; drying ; amoA ; narG ; nosZ ; Rice rhizosphere
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:24
  • 期:2
  • 页码:2116-2125
  • 全文大小:
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water M
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1614-7499
  • 卷排序:24
文摘
Rice fields are an important source of nitrous oxide (N2O), where rice plants could act as a key factor controlling N2O fluxes during the flooding-drying process; however, the microbial driving mechanisms are unclear. In this study, specially designed equipment was used to grow rice plants and collect emitted N2O from the root-growing zone (zone A), root-free zones (zones B, C, and D) independently, at tillering and booting stages under flooding and drying conditions. Soil samples from the four zones were also taken separately. Nitrifying and denitrifying community abundances were detected using quantitative polymerase chain reaction (qPCR). The N2O emission increased significantly along with drying, but the N2O emission capabilities varied among the four zones under drying, while zone B possessed the highest N2O fluxes that were 2.7~4.5 times higher than those from zones C and D. However, zone A showed N2O consumption potential. Notably, zone B also harbored the highest numbers of narG-containing denitrifiers and amoA-containing nitrifiers under drying at both tillering and booting stages. This study demonstrates that drying caused significant increase in N2O emission from rhizosphere soil, in which the higher abundance of AOB would help to produce more nitrate and significantly higher narG-containing microbes would drive more N2O production and emission.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700