In Vitro Oxidation of Collagen Promotes the Formation of Advanced Oxidation Protein Products and the Activation of Human Neutrophils
详细信息    查看全文
  • 作者:Guilherme Vargas Bochi ; Vanessa Dorneles Torbitz ; Luízi Prestes de Campos…
  • 刊名:Inflammation
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:39
  • 期:2
  • 页码:916-927
  • 全文大小:1,007 KB
  • 参考文献:1.Nowotny, K., and T. Grune. 2014. Degradation of oxidized and glycoxidized collagen: role of collagen cross-linking. Archives of Biochemistry and Biophysics 542: 56–64.CrossRef PubMed
    2.Černý, M., J. Skalák, H. Cerna, and B. Brzobohatý. 1996. Advances in purification and separation of posttranslationally modified proteins. Journal of Proteomics 92: 2–27.
    3.Witko-Sarsat, V., M. Friedlander, C. Capeillère-Blandin, T. Nguyen-Khoa, A.T. Nguyen, J. Zingraff, P. Jungers, and B. Descamps-Latscha. 1996. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney International 49: 1304–1313.CrossRef PubMed
    4.Witko-Sarsat, V., V. Gausson, A.T. Nguyen, M. Touam, T. Drüeke, F. Santangelo, and B. Descamps-Latscha. 2003. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney International 64: 82–91.CrossRef PubMed
    5.Shi, X.Y., F.F. Hou, H.X. Niu, G. Wang, D. Xie, Z.J. Guo, Z.M. Zhou, F. Yang, J.W. Tian, and X. Zhang. 2008. Advanced oxidation protein products promote inflammation in diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase. Endocrinology 149: 1829–1839.CrossRef PubMed
    6.Zhou, L.L., F.F. Hou, G.B. Wang, F. Yang, D. Xie, Y.P. Wang, and J.W. Tian. 2009. Accumulation of advanced oxidation protein products induces podocyte apoptosis and deletion through NADPH-dependent mechanisms. Kidney International 76: 1148–1160.CrossRef PubMed
    7.Hanasand, M., R. Omdal, K.B. Norheim, L.G. Gøransson, C. Brede, and G. Jonsson. 2012. Improved detection of advanced oxidation protein products in plasma. Clinica Chimica Acta 413: 901–906.CrossRef
    8.Capeillère-Blandin, C., V. Gausson, B. Descamps-Latscha, and V. Witko-Sarsat. 2004. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochimica et Biophysica Acta 1689: 91–102.CrossRef PubMed
    9.Bochi, G.V., V.D. Torbitz, L.P. Cargnin, J.A. de Carvalho, P. Gomes, and R.N. Moresco. 2014. An alternative pathway through the Fenton reaction for the formation of advanced oxidation protein products, a new class of inflammatory mediators. Inflammation 37: 512–521.CrossRef PubMed
    10.Gorudko, I.V., D.V. Grigorieva, E.V. Shamova, V.A. Kostevich, A.V. Sokolov, E.V. Mikhalchik, S.N. Cherenkevich, J. Arnhold, and O.M. Panasenko. 2014. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change. Free Radic Biol Med 68: 326–334.CrossRef PubMed
    11.Torbitz, V.D., G.V. Bochi, J.A. de Carvalho, R.D. Vaucher, J.E. da Silva, and R.N. Moresco. 2014. In vitro oxidation of fibrinogen promotes functional alterations and formation of advanced oxidation protein products, an inflammation mediator. Inflammation 38: 1201–1206.CrossRef
    12.Colombo, G., M. Clerici, D. Giustarini, N. Portinaro, S. Badalamenti, R. Rossi, A. Milzani, and I. Dalle-Donne. 2015. A central role for intermolecular dityrosine cross-linking of fibrinogen in high molecular weight advanced oxidation protein product (AOPP) formation. Biochimica et Biophysica Acta 1850: 1–12.CrossRef PubMed
    13.Mazaki, Y., S. Hashimoto, T. Tsujimura, M. Morishige, A. Hashimoto, K. Aritake, A. Yamada, J.M. Nam, H. Kiyonari, K. Nakao, and H. Sabe. 2006. Neutrophil direction sensing and superoxide production linked by the GTPase-activating protein GIT2. Nature Immunology 7: 724–731.CrossRef PubMed
    14.Moncada, S., and A. Higgs. 1993. The l -arginine-nitric oxide pathway. The New England Journal of Medicine 329: 2002–2012.CrossRef PubMed
    15.Wright, C.D., A. Mulsch, R. Busse, and H. Osswald. 1989. Generation of nitric oxide by human neutrophils. Biochemical and Biophysical Research Communications 160: 813–819.CrossRef PubMed
    16.Larfars, G., and H. Gyllenhammar. 1995. Measurement of methemoglobin formation from oxyhemoglobin. A real-time, continuous assay of nitric oxide release by human polymorphonuclear leukocytes. Journal of Immunological Methods 184: 53–62.CrossRef PubMed
    17.Ahlin, A., G. Larfars, G. Elinder, J. Palmblad, and H. Gyllenhammar. 1999. Gamma interferon treatment of patients with chronic granulomatous disease is associated with augmented production of nitric oxide by polymorphonuclear neutrophils. Clinical and Diagnostic Laboratory Immunology 6: 420–424.PubMed PubMedCentral
    18.Reed, A., Y.J. Cho, J.S. Coombes, and R.G. Fassett. 2009. Time course and dose response of alpha tocopherol on oxidative stress in haemodialysis patients. BMC Nephrology. doi:10.​1186/​1471-2369-10-32 .PubMed PubMedCentral
    19.Morris, J.C. 1966. The acid ionization constant of HOCl from 5 to 35°. The Journal of Physical Chemistry 70: 3798–3805.CrossRef
    20.Bochi, G.V., V.D. Torbitz, L.P. Cargnin, M.B. Sangoi, R.C. Santos, P. Gomes, and R.N. Moresco. 2012. Fructose-1,6-bisphosphate and N-acetylcysteine attenuate the formation of advanced oxidation protein products, a new class of inflammatory mediators, in vitro. Inflammation 35: 1786–1792.CrossRef PubMed
    21.McCall, M.R., A.C. Carr, T.M. Forte, and B. Frei. 2001. LDL modified by hypochlorous acid is a potent inhibitor of lecithin-cholesterol acyltransferase activity. Arteriosclerosis, Thrombosis, and Vascular Biology 21: 1040–1045.CrossRef PubMed
    22.Davies, J.M.S., D.A. Horwittz, and K.J.L. Davies. 1993. Potential roles of hypochlorous acid and N-chloramines in collagen breakdown by phagocytic cells in synovitis. Free Radical Biology and Medicine 15: 637–643.CrossRef PubMed
    23.Olszowski, S., P. Mak, E. Olszowska, and J. Marcinkiewicz. 2003. Collagen type II modification by hypochlorite. Acta Biochimica Polonica 50: 471–479.PubMed
    24.Witko-Sarsat, V., M. Friedlander, T. Nguyen Khoa, C. Capeillère-Blandin, A.T. Nguyen, S. Canteloup, J.M. Dayer, P. Jungers, T. Drüeke, and B. Descamps-Latscha. 1998. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. The Journal of Immunology 161: 2524–2532.PubMed
    25.Boyum, A. 1974. Separation of blood leukocytes, granulocytes and lymphocytes. Tissue Antigens 4: 269–274.CrossRef PubMed
    26.Tatsch, E., G.V. Bochi, R.S. Pereira, H. Kober, V.A. Agertt, M.M. de Campos, P. Gomes, M.M. Duarte, and R.N. Moresco. 2011. A simple and inexpensive automated technique for measurement of serum nitrite/nitrate. Clinical Biochemistry 44: 348–350.CrossRef PubMed
    27.Morabito, C., F. Rovetta, M. Bizzarri, G. Mazzoleni, G. Fanò, and M.A. Mariggiò. 2010. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: a real-time, single-cell approach. Free Radical Biology and Medicine 48: 579–589.CrossRef PubMed
    28.Bordignon, M., L. Da Dalt, L. Marinelli, and G. Gabai. 2014. Advanced oxidation protein products are generated by bovine neutrophils and inhibit free radical production in vitro. The Veterinary Journal 199: 162–168.CrossRef PubMed
    29.Makni-Maalej, K., M. Chiandotto, M. Hurtado-Nedelec, S. Bedouhene, M.A. Gougerot-Pocidalo, P.M. Dang, and J. El-Benna. 2013. Zymosan induces NADPH oxidase activation in human neutrophils by inducing the phosphorylation of p47phox and the activation of Rac2: involvement of protein tyrosine kinases, PI3Kinase, PKC, ERK1/2 and p38MAPkinase. Biochemical Pharmacology 85: 92–100.CrossRef PubMed
    30.Whiteman, M., D.C. Hooper, G.S. Scott, H. Koprowski, and B. Halliwell. 2002. Inhibition of hypochlorous acid-induced cellular toxicity by nitrite. Proceedings of the National Academy of Sciences of the United States of America 99: 12061–12066.CrossRef PubMed PubMedCentral
    31.Weiss, S.J., M.B. Lampert, and S.T. Test. 1983. Long-lived oxidants generated by human neutrophils: characterisation and bioactivity. Science 227: 625–628.CrossRef
    32.Daumer, K.M., A.U. Khan, and M.J. Steinbeck. 2000. Chlorination of pyridinium compounds. Possible role of hypochlorite, N-chloramines, and chlorine in the oxidation of pyridinoline cross-links of articular cartilage collagen type II during acute inflammation. The Journal of Biological Chemistry 275: 34681–34692.CrossRef PubMed PubMedCentral
    33.Nissim, A., P.G. Winyard, V. Corrigall, R. Fatah, D. Perrett, G. Panayi, and Y. Chernajovsky. 2005. Generation of neoantigenic epitopes after posttranslational modification of type II collagen by factors present within the inflamed joint. Arthritis and Rheumatism 52: 3829–3838.CrossRef PubMed
    34.Sharma, P., S.A. Raghavan, R. Saini, and M. Dikshit. 2004. Ascorbate-mediated enhancement of reactive oxygen species generation from polymorphonuclear leukocytes: modulatory effect of nitric oxide. Journal of Leukocyte Biology 75: 1070–1078.CrossRef PubMed
    35.Gal, A., S. Tamir, L.J. Kennedy, S.R. Tannenbaum, and G.N. Wogan. 1997. Nitrotyrosine formation, apoptosis, and oxidative damage: relationships to nitric oxide production in SJL mice bearing the RcsX tumor. Cancer Research 57: 1823–1828.PubMed
    36.Foote, C.S., T.E. Goyne, and R.I. Lehrer. 1983. Assessment of chlorination by human neutrophils. Nature 301: 715–716.CrossRef PubMed
    37.Weiss, S.J. 1989. Tissue destruction by neutrophils. The New England Journal of Medicine 320: 365–376.CrossRef PubMed
    38.Kennedy, A.D., and F.R. DeLeo. 2009. Neutrophil apoptosis and the resolution of infection. Immunome Research 43: 25–61.CrossRef
    39.Kobayashi, S.D., K.R. Braughton, A.R. Whitney, J.M. Voyich, T.G. Schwan, J.M. Musser, and F.R. DeLeo. 2003. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proceedings of the National Academy of Sciences of the United States of America 100: 10948–10953.CrossRef PubMed PubMedCentral
    40.Valente, A.J., T. Yoshida, R.A. Clark, P. Delafontaine, U. Siebenlist, and B. Chandrasekar. 2013. Advanced oxidation protein products induce cardiomyocyte death via Nox2/Rac1/superoxide-dependent TRAF3lP2/JNK signaling. Free Radical Biology and Medicine 60: 125–135.CrossRef PubMed PubMedCentral
    41.Mayadas, T.N., and X. Cullere. 2005. Neutrophil beta2 integrins: moderators of life or death decisions. Trends in Immunology 26: 388–395.CrossRef PubMed
    42.Williams, M.A., and J.S. Solomkin. 1999. Integrin-mediated signaling in human neutrophil functioning. Journal of Leukocyte Biology 65: 725–736.PubMed
    43.Packer, L., and Valacchi, G. Antioxidants and the response of skin to oxidative stress: vitamin E as a key indicator. Pharmacology and Applied Skin Physiological 15: 282–90.
    44.McIntyre, B.S., K.P. Briski, A. Gapor, and P.W. Sylvester. 2000. Antiproliferative and apoptotic effects of tocopherols and tocotrienols on preneoplastic and neoplastic mouse mammary epithelial cells. Proceedings of the Society for Experimental Biology and Medicine 224: 292–301.CrossRef PubMed
    45.Dean, R.T., J.V. Hunt, A.J. Grant, Y. Yamamoto, and E. Niki. 1991. Free radical damage to proteins: the influence of the relative localization of radical generation, antioxidants, and target proteins. Free Radical Biology and Medicine 11: 161–168.CrossRef PubMed
    46.Hiramatsu, K., and S. Arimori. 1988. Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes. Diabetes 37: 832–837.CrossRef PubMed
    47.Ludwig, P.W., D.B. Hunninghake, and J.R. Hoidal. 1982. Increased leukocyteoxidative metabolism in hyperlipoproteinemia. Lancet 2: 348–350.CrossRef PubMed
    48.Cao, W., J. Xu, Z.M. Zhou, G.B. Wang, F.F. Hou, and J. Nie. 2013. Advanced oxidation protein products activate intrarenal renin-angiotensin system via a CD36-mediated, redox-dependent pathway. Antioxidants and Redox Signaling 18: 19–35.CrossRef PubMed PubMedCentral
  • 作者单位:Guilherme Vargas Bochi (1) (2)
    Vanessa Dorneles Torbitz (1) (3)
    Luízi Prestes de Campos (1)
    Manuela Borges Sangoi (1) (3)
    Natieli Flores Fernandes (1)
    Patrícia Gomes (4)
    Maria Beatriz Moretto (2) (3)
    Fernanda Barbisan (5)
    Ivana Beatrice Mânica da Cruz (5)
    Rafael Noal Moresco (1) (2) (3) (6)

    1. Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
    2. Pharmacology Postgraduate Program, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
    3. Pharmaceutical Sciences Postgraduate Program, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
    4. Nanosciences Postgraduate Program, Franciscan University Center, Santa Maria, Brazil
    5. Biogenomic Laboratory, Department of Morphology, Health Science Center, Federal University of Santa Maria, Santa Maria, Brazil
    6. Centro de Ciências da Saúde, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Prédio 26, Sala 1401, Camobi, 97105-900, Santa Maria-RS, Brasil
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Rheumatology
    Internal Medicine
    Pharmacology and Toxicology
    Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-2576
文摘
The accumulation of advanced oxidation protein products (AOPPs) has been linked to several pathological conditions. Here, we investigated collagen as a potential source for AOPP formation and determined the effects of hypochlorous acid (HOCl)-treated collagen (collagen-AOPPs) on human neutrophil activity. We also assessed whether alpha-tocopherol could counteract these effects. Exposure to HOCl increased the levels of collagen-AOPPs. Collagen-AOPPs also stimulated the production of AOPPs, nitric oxide (NO), superoxide radicals (O2 −), and HOCl by neutrophils. Collagen-AOPPs induced apoptosis and decreased the number of viable cells. Alpha-tocopherol prevented the formation of collagen-AOPPs, strongly inhibited the collagen-AOPP-induced production of O2 − and HOCl, and increased the viability of neutrophils. Our results suggest that collagen is an important protein that interacts with HOCl to form AOPPs, and consequently, collagen-AOPP formation is related to human neutrophil activation and cell death.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700