Global comparative analysis of expressed genes in ovules and leaves of Ginkgo biloba L.
详细信息    查看全文
  • 作者:Li Wang ; Zhaogeng Lu ; Weixing Li ; Jing Xu ; Kaige Luo ; Weichao Lu…
  • 关键词:Ginkgo biloba ; Leaves ; Ovules ; Transcriptome ; Gene expression
  • 刊名:Tree Genetics & Genomes
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:12
  • 期:2
  • 全文大小:1,333 KB
  • 参考文献:Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1:228–232CrossRef
    Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995PubMed
    Beale SI (2005) Green genes gleaned. Trends Plant Sci 10:309–312CrossRef PubMed
    Bencivenga S, Colombo L, Masiero S (2011) Cross talk between the sporophyte and the megagametophyte during ovule development. Sex Plant Reprod 24:113–121CrossRef PubMed
    Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRef
    Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L (2007) Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19:2544–2556CrossRef PubMed PubMedCentral
    Brenner ED, Katari MS, Stevenson DW, Rudd SA, Douglas AW, Moss WN, Twigg RW, Runko SJ, Stellari GM, McCombie WR et al (2005) EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes. BMC Genomics 6:143CrossRef PubMed PubMedCentral
    Carlsbecker A, Sundström JF, Englund M, Uddenberg D, Izquierdo L, Kvarnheden A, Vergara-Silva F, Engström P (2013) Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs. New Phytol 200:261–275CrossRef PubMed
    Chanderbali AS, Yoo MJ, Zahn LM, Brockington SF, Wall PK, Gitzendanner MA, Albertd VA, Leebens-Mack J, Altmanf NS, Ma H et al (2010) Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. Proc Natl Acad Sci 107:22570–22575CrossRef PubMed PubMedCentral
    Colombo L, Battaglia R, Kater MM (2008) Arabidopsis ovule development and its evolutionary conservation. Trends Plant Sci 13:444–450CrossRef PubMed
    Conesa A, Götz S, Garcia-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRef PubMed
    Cucinotta M, Colombo L, Roig-Villanova I (2014) Ovule development, a new model for lateral organ formation. Front Plant Sci 5:117CrossRef PubMed PubMedCentral
    Douglas AW, Stevenson DW, Little DP (2007) Ovule development in Ginkgo biloba L., with emphasis on the collar and nucellus. Int J Plant Sci 168:1207–1236CrossRef
    Drews GN, Wang DF, Steffen JG, Schumaker KS, Yadegari R (2011) Identification of genes expressed in the angiosperm female gametophyte. J Exp Bot 62:1593–1599CrossRef PubMed
    Endress PK (2011) Angiosperm ovules: diversity, development, evolution. Ann Bot 107:1465–1489CrossRef PubMed PubMedCentral
    Englund M, Carlsbecker A, Engström P, Vergara-Silva F (2011) Morphological “primary homology” and expression of AG-subfamily MADS-box genes in pines, podocarps, and yews. Evol Dev 3:171–181CrossRef
    Fischer TC, Meller B, Kustatscher E, Butzmann R (2010) Permian ginkgophyte fossils from the Dolomites resemble extant O-ha-tsuki aberrant leaf-like fructifications of Ginkgo biloba L. BMC Evol Biol 10:337CrossRef PubMed PubMedCentral
    Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA (2002) GLK gene pairs regulate chloroplast development in diverse plant species. Plant J 31:713–727CrossRef PubMed
    Galbiati F, Sinha Roy D, Simonini S, Cucinotta M, Ceccato L, Cuesta C, Simaskova M, Benkova E, Kamiuchi Y, Aida M et al (2013) An integrative model of the control of ovule primordia formation. Plant J 76:446–455CrossRef PubMed
    Gong W, Chen C, Dobeš C, Fu CX, Koch MA (2008) Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Mol Phylogenet Evol 48:1094–1105CrossRef PubMed
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRef PubMed PubMedCentral
    Grossniklaus U, Schneitz K (1998) The molecular and genetic basis of ovule and megagametophyte development. Semin Cell Dev Biol 9:227–238CrossRef PubMed
    Han SM, Wu ZJ, Jin Y, Yang WN, Shi HZ (2015) RNA-Seq analysis for transcriptome assembly, gene identification, and SSR mining in ginkgo (Ginkgo biloba L.). Tree Genet Genomes 11:37CrossRef
    Jager M, Hassanin A, Manuel M, Le Guyader H, Deutsch J (2003) MADS-box genes in Ginkgo biloba and the evolution of the AGAMOUS family. Mol Biol Evol 20:842–854CrossRef PubMed
    Jin B, Wang L, Wang J, Jiang KZ, Wang Y, Jiang XX, Ni CY, Wang YL, Teng NJ (2011) The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana. BMC Plant Biol 11:35CrossRef PubMed PubMedCentral
    Jin B, Zhang L, Lu Y, Wang D, Jiang XX, Zhang M, Wang L (2012a) The mechanism of pollination drop withdrawal in Ginkgo biloba L. BMC Plant Biol 12:59CrossRef PubMed PubMedCentral
    Jin B, Wang D, Lu Y, Jiang XX, Zhang M, Zhang L, Wang L (2012b) Female short shoot and ovule development in Ginkgo biloba L. with Emphasison structures associated with wind pollination. ISRN Bot 2012:230685
    Jin B, Wang D, Lu Y, Zhang M, Wang L (2012b) Structure and function of the tentpole in the reproductive process of Ginkgo biloba L. Plant Signal Behav 7:1330CrossRef PubMed PubMedCentral
    Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, Takabayashi J, Zhu JK, Torii KU (2008) SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 20:1775–1785CrossRef PubMed PubMedCentral
    Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484CrossRef PubMed PubMedCentral
    Kelley DR, Gasser CS (2009) Ovule development: genetic trends and evolutionary considerations. Sex Plant Reprod 22:229–234CrossRef PubMed PubMedCentral
    Kubo T, Fujita M, Takahashi H, Nakazono M, Tsutsumi N, Kurata N (2013) Transcriptome analysis of developing ovules in rice isolated by laser microdissection. Plant Cell Physiol 54:750–765CrossRef PubMed
    Lin XH, Zhang J, Li Y, Luo HM, Wu Q, Sun C, Song JY, Li XW, Wei JH, Lu AP et al (2011) Functional genomics of living fossil tree, Ginkgo, based on next-generation sequencing technology. Physiol Plant 143:207–218CrossRef PubMed
    Lin CP, Wu CS, Huang YY, Chaw SM (2012) The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biol Evol 4:374–381CrossRef PubMed PubMedCentral
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2—△△Ct method. Methods 25:402–408CrossRef PubMed
    Lovisetto A, Guzzo F, Tadiello A, Toffali K, Favretto A, Casadoro G (2012) Molecular analyses of MADS-box genes trace back to Gymnosperms the invention of fleshy fruits. Mol Biol Evol 29:409–419CrossRef PubMed
    Lovisetto A, Guzzo F, Busatto N, Casadoro G (2013) Gymnosperm B-sister genes may be involved in ovule/seed development, and in some species, in the growth of fleshy fruit-like structures. Ann Bot 112:535–544CrossRef PubMed PubMedCentral
    Magallón S, Hilu KW, Quandt D (2013) Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am J Bot 100:556–573CrossRef PubMed
    Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M, León P (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J 9:649–658CrossRef PubMed
    Mathews S, Kramer EM (2012) The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. New Phytol 194:910–923CrossRef PubMed
    Melzer R, Wang YQ, Theißen G (2010) The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin Cell Dev Biol 21:118–128CrossRef PubMed
    Mohanta TK, Occhipinti A, Zebelo SA, Foti M, Fliegmann J, Bossi S, Maffei M, Bertea CM (2012) Ginkgo biloba responds to herbivory by activating early signaling and indirect defenses. PLoS One 7, e32822CrossRef PubMed PubMedCentral
    Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628CrossRef PubMed
    Naugolnykh SV (2007) Foliar seed-bearing organs of Paleozoic Ginkgophytes and the early evolution of the Ginkgoales. Paleontol J 41:815–859CrossRef
    Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD et al (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59CrossRef PubMed PubMedCentral
    Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584CrossRef PubMed
    Pillitteri LJ, Torii KU (2007) Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development. Bioessays 29:861–870CrossRef PubMed
    Rudall PJ, Hilton J, Vergara-Silva F, Bateman RM (2011) Recurrent abnormalities in conifer cones and the evolutionary origins of flower-like structures. Trends Plant Sci 16:151–159CrossRef PubMed
    Ruelens P, Geuten K (2013) When paleontology and molecular genetics meet: a genetic context for the evolution of conifer ovuliferous scales. New Phytol 200:10–12CrossRef PubMed
    Savard L, Li P, Strauss SH, Chase MW, Michaud M, Bousquet J (1994) Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants. Proc Natl Acad Sci U S A 91:5163–5167CrossRef PubMed PubMedCentral
    Shi DQ, Yang WC (2011) Ovule development in Arabidopsis: progress and challenge. Curr Opin Plant Biol 14:74–80CrossRef PubMed
    Shirano Y, Shimada H, Kanamaru K, Fujiwara M, Tanaka K, Takahashi H, Unno K, Sato S, Tabata S, Hayashi H et al (2000) Chloroplast development in Arabidopsis thaliana requires the nuclear-encoded transcription factor Sigma B. FEBS Lett 485:178–182CrossRef PubMed
    Uemura K (1997) Cenozoic history of Ginkgo in East Asia. In: Hori T, Ridge RW, Tulecke W, Del Tredici P, Guiller JT, Tobe H (eds) Ginkgo biloba—a global treasure. Springer, Tokyo, pp 207–221CrossRef
    Wang T, Zhang NH, Du LF (2005) Isolation of RNA of high quality and yield from Ginkgo biloba leaves. Biotechnol Lett 27:629–633CrossRef PubMed
    Wang YQ, Shen JK, Berglund T, Ohlsson BA, Tang XF, Zhou ZK, Wu RY, Zhou XH, Chen JN (2010) Analysis of expressed sequence tags from Ginkgo mature foliage in China. Tree Genet Genomes 6:357–365CrossRef
    Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross HA, Dougherty WM, Lin BY, Zieve JJ, Martinez-Garcia PJ et al (2014) Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196:891–909CrossRef PubMed PubMedCentral
    Yamaki S, Nagato Y, Kurata N, Nonomura KI (2011) Ovule is a lateral organ finally differentiated from the terminating floral meristem in rice. Dev Biol 351:208–216CrossRef PubMed
    Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297CrossRef PubMed PubMedCentral
    Zhao Y, Thammannagowda S, Staton M, Tang S, Xia XL, Yin WL, Liang HY (2013) An EST dataset for Metasequoia glyptostroboides buds: the first EST resource for molecular genomics studies in Metasequoia. Planta 237:755–770CrossRef PubMed
    Zhou ZY (2009) An overview of fossil Ginkgoales. Palaeoworld 18:1–22CrossRef
    Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ et al (2014) Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196:875–890CrossRef PubMed PubMedCentral
  • 作者单位:Li Wang (1)
    Zhaogeng Lu (1)
    Weixing Li (1)
    Jing Xu (1)
    Kaige Luo (1)
    Weichao Lu (1)
    Li Zhang (1)
    Biao Jin (1)

    1. College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
  • 刊物主题:Forestry; Plant Genetics & Genomics; Plant Breeding/Biotechnology; Tree Biology; Biotechnology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1614-2950
文摘
Ovules are an essential reproductive structure in all seed plants. However, limited information is available on the genetics and genomics of ovules in gymnosperms. Here, we used Illumina sequencing to derive comprehensive gene expression profiles for ovules and leaves in the extant basal gymnosperm Ginkgo biloba. A total of 100,124 transcripts, including 77,898 unigenes, were obtained by de novo assembly from leaf cDNA samples. These transcripts were functionally annotated by comparing their sequences to public protein databases as references. For the comparative analysis of gene expression levels between ovules and leaves, digital gene expression tag profiling was used. An analysis of the expressed genes revealed a high proportion of functional genes commonly expressed in both ovules and leaves. Functional gene expression analyses and microscopic observations implied that ovules and leaves share the photosynthetic structures of chloroplasts and stomata, indicating that they are homologous structures. Interestingly, many homologous genes associated with floral development were expressed in ovules, indicating that gymnosperm ovules share some gene regulatory mechanisms with angiosperm floral organs. The genes that showed highly differential expression levels between leaves and ovules were involved in flavonoid biosynthesis, cell division, hormone transport, transcriptional regulation, and starch and sucrose metabolism, and they indicated higher cell growth and division activity in the ovule. Thus, these results provide valuable gene expression information, which will contribute to an enhanced understanding of the diverse biological mechanisms in the ovules and leaves of G. biloba and provide important molecular insights into ovule evolution in early seed plants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700