A structural analysis of in vitro catalytic activities of hammerhead ribozymes
详细信息    查看全文
  • 作者:Yu Shao (1)
    Susan Wu (1)
    Chi Yu Chan (1)
    Jessie R Klapper (1)
    Erasmus Schneider (1)
    Ye Ding (1)
  • 刊名:BMC Bioinformatics
  • 出版年:2007
  • 出版时间:December 2007
  • 年:2007
  • 卷:8
  • 期:1
  • 全文大小:377KB
  • 参考文献:1. Haseloff J, Gerlach WL: Simple RNA enzymes with new and highly specific endoribonuclease activities. / Nature 1988,334(6183):585鈥?91. CrossRef
    2. Tanner NK: Ribozymes: the characteristics and properties of catalytic RNAs. / FEMS microbiology reviews 1999,23(3):257鈥?75. CrossRef
    3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. / Nature 1998,391(6669):806鈥?11. CrossRef
    4. Junn E, Kang C: Detection of hammerhead ribozyme-mediated cleavage and reduced expression of LacZ' mRNA in E. coli. / Genet Anal 1996,13(1):1鈥?.
    5. Tatout C, Gauthier E, Pinon H: Rapid evaluation in Escherichia coli of antisense RNAs and ribozymes. / Letters in applied microbiology 1998,27(5):297鈥?01. CrossRef
    6. Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J, Marshall WS, Khvorova A: 3' UTR seed matches, but not overall identity, are associated with RNAi off-targets. / Nature methods 2006,3(3):199鈥?04. CrossRef
    7. Semizarov D, Frost L, Sarthy A, Kroeger P, Halbert DN, Fesik SW: Specificity of short interfering RNA determined through gene expression signatures. / Proc Natl Acad Sci USA 2003,100(11):6347鈥?352. CrossRef
    8. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS: Expression profiling reveals off-target gene regulation by RNAi. / Nat Biotechnol 2003,21(6):635鈥?37. CrossRef
    9. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS: Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. / RNA 2006,12(7):1179鈥?187. CrossRef
    10. Pei Y, Tuschl T: On the art of identifying effective and specific siRNAs. / Nature methods 2006,3(9):670鈥?76. CrossRef
    11. Akashi H, Matsumoto S, Taira K: Gene discovery by ribozyme and siRNA libraries. / Nature reviews 2005,6(5):413鈥?22. CrossRef
    12. Li QX, Robbins JM, Welch PJ, Wong-Staal F, Barber JR: A novel functional genomics approach identifies mTERT as a suppressor of fibroblast transformation. / Nucleic Acids Res 2000,28(13):2605鈥?612. CrossRef
    13. Kashani-Sabet M, Liu Y, Fong S, Desprez PY, Liu S, Tu G, Nosrati M, Handumrongkul C, Liggitt D, Thor AD, Debs RJ: Identification of gene function and functional pathways by systemic plasmid-based ribozyme targeting in adult mice. / Proc Natl Acad Sci USA 2002,99(6):3878鈥?883. CrossRef
    14. Beger C, Pierce LN, Kruger M, Marcusson EG, Robbins JM, Welcsh P, Welch PJ, Welte K, King MC, Barber JR, Wong-Staal F: Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach. / Proc Natl Acad Sci USA 2001,98(1):130鈥?35. CrossRef
    15. Kawasaki H, Taira K: A functional gene discovery in the Fas-mediated pathway to apoptosis by analysis of transiently expressed randomized hybrid-ribozyme libraries. / Nucleic Acids Res 2002,30(16):3609鈥?614. CrossRef
    16. Bramlage B, Luzi E, Eckstein F: Designing ribozymes for the inhibition of gene expression. / Trends in biotechnology 1998,16(10):434鈥?38. CrossRef
    17. Vickers TA, Wyatt JR, Freier SM: Effects of RNA secondary structure on cellular antisense activity. / Nucleic Acids Res 2000,28(6):1340鈥?347. CrossRef
    18. Zhao JJ, Lemke G: Rules for ribozymes. / Mol Cell Neurosci 1998,11(1鈥?):92鈥?7. CrossRef
    19. Bohula EA, Salisbury AJ, Sohail M, Playford MP, Riedemann J, Southern EM, Macaulay VM: The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. / J Biol Chem 2003,278(18):15991鈥?5997. CrossRef
    20. Kretschmer-Kazemi Far R, Sczakiel G: The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. / Nucleic Acids Res 2003,31(15):4417鈥?424. CrossRef
    21. Overhoff M, Alken M, Far RK, Lemaitre M, Lebleu B, Sczakiel G, Robbins I: Local RNA target structure influences siRNA efficacy: a systematic global analysis. / J Mol Biol 2005,348(4):871鈥?81. CrossRef
    22. Schubert S, Grunweller A, Erdmann VA, Kurreck J: Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. / J Mol Biol 2005,348(4):883鈥?93. CrossRef
    23. Yoshinari K, Miyagishi M, Taira K: Effects on RNAi of the tight structure, sequence and position of the targeted region. / Nucleic Acids Res 2004,32(2):691鈥?99. CrossRef
    24. Zhao Y, Samal E, Srivastava D: Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. / Nature 2005,436(7048):214鈥?20. CrossRef
    25. Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y: Potent effect of target structure on microRNA function. / Nat Struct Mol Biol 2007, 14:287鈥?94. CrossRef
    26. Denman RB: Using RNAFOLD to predict the activity of small catalytic RNAs. / BioTechniques 1993,15(6):1090鈥?095.
    27. Sczakiel G, Tabler M: Computer-aided calculation of the local folding potential of target RNA and its use for ribozyme design. / Methods Mol Biol 1997, 74:11鈥?5.
    28. James W, Cowe E: Computational approaches to the identification of ribozyme target sites. / Methods Mol Biol 1997, 74:17鈥?6.
    29. Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. / Nucleic Acids Res 2003,31(13):3406鈥?415. CrossRef
    30. Altuvia S, Kornitzer D, Teff D, Oppenheim AB: Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. / J Mol Biol 1989,210(2):265鈥?80. CrossRef
    31. Betts L, Spremulli LL: Analysis of the role of the Shine-Dalgarno sequence and mRNA secondary structure on the efficiency of translational initiation in the Euglena gracilis chloroplast atpH mRNA. / J Biol Chem 1994,269(42):26456鈥?6463.
    32. Ding Y, Lawrence CE: A statistical sampling algorithm for RNA secondary structure prediction. / Nucleic Acids Res 2003,31(24):7280鈥?301. CrossRef
    33. Ding Y, Chan CY, Lawrence CE: Sfold web server for statistical folding and rational design of nucleic acids. / Nucleic Acids Res 2004, (32 Web Server):W135鈥?41.
    34. Ding Y, Chan CY, Lawrence CE: Clustering of RNA secondary structures with application to messenger RNAs. / J Mol Biol 2006,359(3):554鈥?71. CrossRef
    35. Ding Y, Chan CY, Lawrence CE: RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. / RNA 2005,11(8):1157鈥?166. CrossRef
    36. Ding Y, Lawrence CE: Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. / Nucleic Acids Res 2001,29(5):1034鈥?046. CrossRef
    37. Shao Y, Wu Y, Chan CY, McDonough K, Ding Y: Rational design and rapid screening of antisense oligonucleotides for prokaryotic gene modulation. / Nucleic Acids Res 2006,34(19):5660鈥?669. CrossRef
    38. Shao Y, Chan CY, Maliyekkel A, Lawrence CE, Roninson IB, Ding Y: Effect of target secondary structure on RNAi efficiency. / RNA 2007,13(10):1631鈥?640. CrossRef
    39. Kowalski P, Wichert A, Holm PS, Dietel M, Lage H: Selection and characterization of a high-activity ribozyme directed against the antineoplastic drug resistance-associated ABC transporter BCRP/MXR/ABCG2. / Cancer gene therapy 2001,8(3):185鈥?92. CrossRef
    40. Liu R, Rohe B, Carson DD, Farach-Carson MC: A rapid and simple nonradioactive method for in vitro testing of ribozyme activity. / Antisense & nucleic acid drug development 2002,12(4):283鈥?88. CrossRef
    41. Martick M, Scott WG: Tertiary contacts distant from the active site prime a ribozyme for catalysis. / Cell 2006,126(2):309鈥?20. CrossRef
    42. Zuker M: On finding all suboptimal foldings of an RNA molecule. / Science 1989,244(4900):48鈥?2. CrossRef
    43. Wuchty S, Fontana W, Hofacker IL, Schuster P: Complete suboptimal folding of RNA and the stability of secondary structures. / Biopolymers 1999,49(2):145鈥?65. CrossRef
    44. Weisberg S: / Applied Linear Regression / 3 Edition John Wiley & Sons, New York 2005. CrossRef
    45. Christoffersen RE, McSwiggen JA, Konings D: Application of computational technologies to ribozyme biotechnology products. / J Mol Structure (Theochem) 1994, 311:273鈥?84. CrossRef
    46. Milner N, Mir KU, Southern EM: Selecting effective antisense reagents on combinatorial oligonucleotide arrays. / Nat Biotechnol 1997,15(6):537鈥?41. CrossRef
    47. Hargittai MR, Gorelick RJ, Rouzina I, Musier-Forsyth K: Mechanistic insights into the kinetics of HIV-1 nucleocapsid protein-facilitated tRNA annealing to the primer binding site. / J Mol Biol 2004,337(4):951鈥?68. CrossRef
    48. Nelson JA, Uhlenbeck OC: When to believe what you see. / Mol Cell 2006,23(4):447鈥?50. CrossRef
    49. Peracchi A, Karpeisky A, Maloney L, Beigelman L, Herschlag D: A core folding model for catalysis by the hammerhead ribozyme accounts for its extraordinary sensitivity to abasic mutations. / Biochemistry 1998,37(42):14765鈥?4775. CrossRef
    50. Simorre JP, Legault P, Hangar AB, Michiels P, Pardi A: A conformational change in the catalytic core of the hammerhead ribozyme upon cleavage of an RNA substrate. / Biochemistry 1997,36(3):518鈥?25. CrossRef
    51. Westhof E: A tale in molecular recognition: the hammerhead ribozyme. / J Mol Recognit 2007,20(1):1鈥?. CrossRef
    52. Xia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH: Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. / Biochemistry 1998,37(42):14719鈥?4735. CrossRef
    53. Mathews DH, Sabina J, Zuker M, Turner DH: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. / J Mol Biol 1999,288(5):911鈥?40. CrossRef
    54. Team RDC: R: A language and environment for statistical computing (ISBN 3鈥?00051鈥?7鈥?).
  • 作者单位:Yu Shao (1)
    Susan Wu (1)
    Chi Yu Chan (1)
    Jessie R Klapper (1)
    Erasmus Schneider (1)
    Ye Ding (1)

    1. New York State Department of Health, Wadsworth Center, 150 New Scotland Avenue, Albany, NY, 12208, USA
  • ISSN:1471-2105
文摘
Background Ribozymes are small catalytic RNAs that possess the dual functions of sequence-specific RNA recognition and site-specific cleavage. Trans-cleaving ribozymes can inhibit translation of genes at the messenger RNA (mRNA) level in both eukaryotic and prokaryotic systems and are thus useful tools for studies of gene function. However, identification of target sites for efficient cleavage poses a challenge. Here, we have considered a number of structural and thermodynamic parameters that can affect the efficiency of target cleavage, in an attempt to identify rules for the selection of functional ribozymes. Results We employed the Sfold program for RNA secondary structure prediction, to account for the likely population of target structures that co-exist in dynamic equilibrium for a specific mRNA molecule. We designed and prepared 15 hammerhead ribozymes to target GUC cleavage sites in the mRNA of the breast cancer resistance protein (BCRP). These ribozymes were tested, and their catalytic activities were measured in vitro. We found that target disruption energy owing to the alteration of the local target structure necessary for ribozyme binding, and the total energy change of the ribozyme-target hybridization, are two significant parameters for prediction of ribozyme activity. Importantly, target disruption energy is the major contributor to the predictability of ribozyme activity by the total energy change. Furthermore, for a target-site specific ribozyme, incorrect folding of the catalytic core, or interactions involving the two binding arms and the end sequences of the catalytic core, can have detrimental effects on ribozyme activity. Conclusion The findings from this study suggest rules for structure-based rational design of trans-cleaving hammerhead ribozymes in gene knockdown studies. Tools implementing these rules are available from the Sribo module and the Srna module of the Sfold program available through Web server at http://sfold.wadsworth.org.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700