Spatially resolved analysis of plutonium isotopic signatures in environmental particle samples by laser ablation-MC-ICP-MS
详细信息    查看全文
  • 作者:Stefanie Konegger-Kappel ; Thomas Prohaska
  • 关键词:Plutonium isotope ratios ; Environmental contamination ; Chernobyl nuclear power plant ; (MC) ; ICP ; MS ; Laser ablation
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:408
  • 期:2
  • 页码:431-440
  • 全文大小:3,506 KB
  • 参考文献:1.Taylor DM (1995) Environmental plutonium in humans. Appl Radiat Isot 46(11):1245–1252CrossRef
    2.Perelygin VP, Chuburkov YT (1997) Man-made plutonium in environment—possible serious hazard for living species. Radiat Measur 28(1–6):385–392CrossRef
    3.Salbu B (2009) Challenges in radioecology. J Environ Radioact 100(12):1086–1091CrossRef
    4.Mayer K, Wallenius M, Fanghänel T (2007) Nuclear forensic science—from cradle to maturity. J Alloys Compd 444–445:50–56CrossRef
    5.Donohue DL (2002) Peer reviewed: strengthened nuclear safeguards. Anal Chem 74 (1):28 A-35 A. doi: 10.​1021/​ac021909y
    6.Zheng J, Tagami K, Watanabe Y, Uchida S, Aono T, Ishii N, Yoshida S, Kubota Y, Fuma S, Ihara S (2012) Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Scientific Rep 2
    7.Schneider S, Walther C, Bister S, Schauer V, Christl M, Synal H-A, Shozugawa K, Steinhauser G (2013) Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations. Scientific Rep 3
    8.IAEA (2011) Radioactive particles in the environment: sources, particle characterization and analytical techniques. http://​www-pub.​iaea.​org/​MTCD/​publications/​PDF/​TE_​1663_​web.​pdf . Accessed 21 June 2015. IAEA-TECDOC-1663
    9.Salbu B, Lind OC (2005) Radioactive particles released from various nuclear sources. Radioprotection 40:27–32CrossRef
    10.Hu Q-H, Weng J-Q, Wang J-S (2010) Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioact 101(6):426–437CrossRef
    11.Carter MW, Moghissi AA (1977) Three decades of nuclear testing. Health Phys 33(1):55–71CrossRef
    12.Ketterer ME, Szechenyi SC (2008) Determination of plutonium and other transuranic elements by inductively coupled plasma mass spectrometry: a historical perspective and new frontiers in the environmental sciences. Spectrochim Acta B At Spectrosc 63(7):719–737CrossRef
    13.Kelley JM, Bond LA, Beasley TM (1999) Global distribution of Pu isotopes and 237Np. Sci Total Environ 237–238:483–500CrossRef
    14.Kashparov VA, Lundin SM, Zvarych SI, Yoshchenko VI, Levchuk SE, Khomutinin YV, Maloshtan IM, Protsak VP (2003) Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci Total Environ 317(1–3):105–119CrossRef
    15.Kashparov V, Yoschenko V, Levchuk S, Bugai D, Van Meir N, Simonucci C, Martin-Garin A (2011) Radionuclide migration in the experimental polygon of the red forest waste site in the Chernobyl zone. Part 1: characterization of the waste trench, fuel particle transformation processes in soils, biogenic fluxes and effects on biota. Appl Geochem 27(7):1348–1358CrossRef
    16.Kashparov VA, Protsak VP, Ahamdach N, Stammose D, Peres JM, Yoschenko VI, Zvarich SI (2000) Dissolution kinetics of particles of irradiated Chernobyl nuclear fuel: influence of pH and oxidation state on the release of radionuclides in the contaminated soil of Chernobyl. J Nucl Mater 279(2–3):225–233CrossRef
    17.Salbu B, Krekling T, Lind OC, Oughton DH, Drakopoulos M, Simionovici A, Snigireva I, Snigirev A, Weitkamp T, Adams F, Janssens K, Kashparov VA (2001) High energy X-ray microscopy for characterisation of fuel particles. Nucl Instrum Meth A 467–468(Part 2 (0)):1249–1252CrossRef
    18.Boulyga SF, Prohaska T (2008) Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters. Anal Bioanal Chem 390(2):531–539CrossRef
    19.Hrnecek E, Steier P, Wallner A (2005) Determination of plutonium in environmental samples by AMS and alpha spectrometry. Appl Radiat Isot 63(5–6):633–638CrossRef
    20.Vajda N, Kim C-K (2010) Determination of Pu isotopes by alpha spectrometry: a review of analytical methodology. J Radioanal Nucl Chem 283(1):203–223CrossRef
    21.Chamizo E, Jiménez-Ramos MC, Enamorado SM, García-León M, García-Tenorio R, Mas JL, Masqué P, Merino J, Sanchez-Cabeza JA (2010) Characterisation of the plutonium isotopic composition of a sediment core from Palomares, Spain, by low-energy AMS and alpha-spectrometry. Nucl Instrum Meth B 268:1273–1276CrossRef
    22.Kim C-S, Kim C-K, Martin P, Sansone U (2007) Determination of Pu isotope concentrations and isotope ratio by inductively coupled plasma mass spectrometry: a review of analytical methodology. J Anal At Spectrom 22(7):827–841CrossRef
    23.Jakopic R, Richter S, Kühn H, Aregbe Y (2010) Determination of 240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu isotope ratios in environmental reference materials and samples from Chernobyl by thermal ionization mass spectrometry (TIMS) and filament carburization. J Anal At Spectrom 25(6):815–821CrossRef
    24.Nunnemann M, Erdmann N, Hasse HU, Huber G, Kratz JV, Kunz P, Mansel A, Passler G, Stetzer O, Trautmann N, Waldek A (1998) Trace analysis of plutonium in environmental samples by resonance ionization mass spectroscopy (RIMS). J Alloys Compd 271–273:45–48CrossRef
    25.Erdmann N, Herrmann G, Huber G, Köhler S, Kratz JV, Mansel A, Nunnemann M, Passler G, Trautmann N, Turchin A, Waldek A (1997) Resonance ionization mass spectroscopy for trace determination of plutonium in environmental samples. Fresenius J Anal Chem 359(4):378–381CrossRef
    26.Becker JS (2003) Mass spectrometry of long-lived radionuclides. Spectrochim Acta B 58(10):1757–1784CrossRef
    27.Boulyga SF (2011) Mass spectrometric analysis of long-lived radionuclides in bio-assays. Int J Mass Spectrom 307(1–3):200–210CrossRef
    28.Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608(2):105–139CrossRef
    29.Lariviere D, Taylor VF, Evans RD, Cornett RJ (2006) Radionuclide determination in environmental samples by inductively coupled plasma mass spectrometry. Spectrochim Acta B 61(8):877–904CrossRef
    30.Becker JS (2005) Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides. Int J Mass Spectrom 242(2–3):183–195CrossRef
    31.Pointurier F, Pottin A-C, Hubert A (2011) Application of nanosecond-UV laser ablation-inductively coupled plasma mass spectrometry for the isotopic analysis of single submicrometer-size uranium particles. Anal Chem 83(20):7841–7848CrossRef
    32.Aregbe Y, Prohaska T, Stefanka Z, Széles É, Hubert A, Boulyga S (2011) Report on the workshop on direct analysis of solid samples using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS)—organised by the ESARDA working group on standards and techniques for destructive analysis (WG DA). ESARDA Bull 46:136–145
    33.Kappel S, Boulyga S, Dorta L, Günther D, Hattendorf B, Koffler D, Laaha G, Leisch F, Prohaska T (2013) Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS. Anal Bioanal Chem 405(9):2943–2955CrossRef
    34.Taylor RN, Warneke T, Milton JA, Croudace IW, Warwick PE, Nesbitt RW (2001) Plutonium isotope ratio analysis at femtogram to nanogram levels by multicollector ICP-MS. J Anal At Spectrom 16(3):279–284CrossRef
    35.Esaka F, Suzuki D, Magara M (2015) Identifying uranium particles using fission tracks and microsampling individual particles for analysis using thermal ionization mass spectrometry. Anal Chem 87(5):3107–3113CrossRef
    36.Boulyga SF, Erdmann N, Funk H, Kievets MK, Lomonosova EM, Mansel A, Trautmann N, Yaroshevich OI, Zhuk IV (1997) Determination of isotopic composition of plutonium in hot particles of the Chernobyl area. Radiat Measur 28(1–6):349–352CrossRef
    37.Wendt K, Blaum K, Bushaw BA, Grüning C, Horn R, Huber G, Kratz JV, Kunz P, Müller P, Nörtershäuser W, Nunnemann M, Passler G, Schmitt A, Trautmann N, Waldek A (1999) Recent developments in and applications of resonance ionization mass spectrometry. Fresenius J Anal Chem 364(5):471–477CrossRef
    38.Kappel S, Boulyga SF, Prohaska T (2012) Direct uranium isotope ratio analysis of single micrometer-sized glass particles. J Environ Radioact 113:8–15CrossRef
    39.Fietzke J, Liebetrau V, Günther D, Gurs K, Hametner K, Zumholz K, Hansteen TH, Eisenhauer A (2008) An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates. J Anal At Spectrom 23(7):955–961CrossRef
    40.JCGM 100:2008. GUM 1995 with minor corrections. Evaluation of measurement data—guide to the expression of uncertainty in measurement
    41.Ellison SLR, Williams A (Eds). Eurachem/CITAC guide: quantifying uncertainty in analytical measurement, 3rd (edn), (2012) ISBN 978-0-948926-30-3. Available from www.​eurachem.​org
    42.Boulyga SF, Tibi M, Heumann KG (2004) Application of isotope-dilution laser ablation ICP-MS for direct determination of Pu concentrations in soils at pg g−1 levels. Anal Bioanal Chem 378(2):342–347CrossRef
    43.Boulyga SF, Becker JS (2002) Isotopic analysis of uranium and plutonium using ICP-MS and estimation of burn-up of spent uranium in contaminated environmental samples. J Anal At Spectrom 17(9):1143–1147CrossRef
    44.Boulyga SF, Desideri D, Meli MA, Testa C, Becker JS (2003) Plutonium and americium determination in mosses by laser ablation ICP-MS combined with isotope dilution technique. Int J Mass Spectrom 226(3):329–339CrossRef
    45.Muramatsu Y, Rühm W, Yoshida S, Tagami K, Uchida S, Wirth E (2000) Concentrations of 239Pu and 240Pu and their isotopic ratios determined by ICP-MS in soils collected from the Chernobyl 30-km zone. Environ Sci Technol 34(14):2913–2917CrossRef
    46.Kirchner G, Noack CC (1988) Core history and nuclide inventory of the Chernobyl core at the time of the accident. Nucl Saf 29(1):1–3
    47.Begichev SN, Borovoj AA, Burlakov EB, Gagarinsky AJ, Demin VF, Khrulev AA, Khodakovsky IL (1990) In: Rogers JT (ed) Fission product transport processes in reactor accidents. Hemisphere, New York, pp 717–734
    48.ORIGEN-ARP Cross-section libraries for the RBMK-1000 system. http://​www.​ornl.​gov/​sci/​scale/​Publications/​Murphy/​ORNL_​TM_​2006_​139.​pdf . Accessed 7 Mar 2012. (2006)
  • 作者单位:Stefanie Konegger-Kappel (1) (2)
    Thomas Prohaska (1)

    1. Department of Chemistry, Division of Analytical Chemistry, Research Group Analytical Ecogeochemistry, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
    2. Office of Safeguards Analytical Services, Department of Safeguards, International Atomic Energy Agency (IAEA), Vienna International Centre, PO Box 100, 1400, Vienna, Austria
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
Laser ablation–multi-collector–inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) was optimized and investigated with respect to its performance for determining spatially resolved Pu isotopic signatures within radioactive fuel particle clusters. Fuel particles had been emitted from the Chernobyl nuclear power plant (ChNPP) where the 1986 accident occurred and were deposited in the surrounding soil, where weathering processes caused their transformation into radioactive clusters, so-called micro-samples. The size of the investigated micro-samples, which showed surface alpha activities below 40 mBq, ranged from about 200 to 1000 μm. Direct single static point ablations allowed to identify variations of Pu isotopic signatures not only between distinct fuel particle clusters but also within individual clusters. The resolution was limited to 100 to 120 μm as a result of the applied laser ablation spot sizes and the resolving power of the nuclear track radiography methodology that was applied for particle pre-selection. The determined 242Pu/239Pu and 240Pu/239Pu isotope ratios showed a variation from low to high Pu isotope ratios, ranging from 0.007(2) to 0.047(8) for 242Pu/239Pu and from 0.183(13) to 0.577(40) for 240Pu/239Pu. In contrast to other studies, the applied methodology allowed for the first time to display the Pu isotopic distribution in the Chernobyl fallout, which reflects the differences in the spent fuel composition over the reactor core. The measured Pu isotopic signatures are in good agreement with the expected Pu isotopic composition distribution that is typical for a RBMK-1000 reactor, indicating that the analyzed samples are originating from the ill-fated Chernobyl reactor. The average Pu isotope ratios [240Pu/239Pu = 0.388(86), 242Pu/239Pu = 0.028(11)] that were calculated from all investigated samples (n = 48) correspond well to previously published results of Pu analyses in contaminated samples from the vicinity of the Chernobyl NPP [e.g. 240Pu/239Pu = 0.394(2) and 242Pu/239Pu = 0.027(1); Nunnemann et al. (J Alloys Compd 271–273:45–48, 1998)].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700