Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales
详细信息    查看全文
  • 作者:Fabíola M Carvalho (1)
    Rangel C Souza (1)
    Fernando G Barcellos (2)
    Mariangela Hungria (3)
    Ana Tereza R Vasconcelos (1) (2)
  • 刊名:BMC Microbiology
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:10
  • 期:1
  • 全文大小:3786KB
  • 参考文献:1. Viprey V, Del Greco A, Golinowski W, Broughton WJ, Perret X: Symbiotic implications of type III protein secretion machinery in Rhizobium . / Mol Microbiol 1998, 28:1381-389. CrossRef
    2. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S: Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti . / DNA Res 2000, 7:331-38. CrossRef
    3. Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ, Umayam L, Brinkac LM, Beanan MJ, Daugherty SC, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Nelson WC, Ayodeji B, Kraul M, Shetty J, Malek J, Van Aken SE, Riedmuller S, Tettelin H, Gill SR, White O, Salzberg SL, Hoover DL, Lindler LE, Halling SM, Boyle SM, Fraser CM: The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. / Proc Natl Acad Sci USA 2002, 99:13148-3153. CrossRef
    4. Raskin D, Seshadri R, Pukatzki S, Mekalanos J: Bacterial genomics and pathogen evolution. / Cell 2006, 124:703-14. CrossRef
    5. Guerrero G, Peralta H, Aguilar A, Diaz R, Villalobos MA, Medrano-Soto A, Mora J: Evolutionary, structural and functional relationships revealed by comparative analysis of syntenic genes in Rhizobiales. / BMC Evol Biol 2005, 5:55-3. CrossRef
    6. Young JPW, Johnston AWB: The evolution of specificity in the legume- Rhizobium symbiosis. / Trends Ecol Evol 1989, 4:341-49. CrossRef
    7. Broughton WJ, Jabboury S, Perret X: Keys to symbiotic harmony. / J Bacteriol 2000, 182:5641-652. CrossRef
    8. Wang ET, Martínez-Romero E: Phylogeny of root and stem nodule bacteria associated with legumes. In / Prokaryotic nitrogen fixation: a model system for analysis of a biological process. 3rd edition. Horizon Scientific Press. Madison: Wisconsin; 2000:177-86.
    9. Fani R, Gallo R, Lio P: Molecular evolution of nitrogen fixation: the evolutionary history of the nifD , nifK , nifE , and nifN genes. / J Mol Evol 2000, 51:1-1.
    10. Henson BJ, Watson LE, Barnum SR: The evolutionary history of nitrogen fixation, as assessed by nifD . / J Mol Evol 2004, 58:309-99.
    11. Raymond J, Siefert JL, Staples CR, Blankenship RE: The natural history of nitrogen fixation. / Mol Biol Evol 2004, 21:541-54. CrossRef
    12. Lloret L, Martínez-Romero E: Evolution and phylogeny of rhizobia. / Rev Latinoam Microbiol 2005, 47:43-0.
    13. Ochman H, Moran NA: Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. / Science 2001, 292:1096-099. CrossRef
    14. Doyle JJ: Phylogenetic perspectives of nodulation: evolving views of plants and symbiotic bacteria. / Trends Plant Sci 1998, 3:473-78. CrossRef
    15. Yang GP, Debelle F, Ferro M, Maillet F, Schiltz O, Vialas C, Savagnac A, Prome JC, Dénarié J: Rhizobium nod factor structure and the phylogeny of temperate legumes. In / Biological nitrogen fixation for the 21st century. Edited by: Elmerich C. Kluwer Academic Publishers. Dordrecht: Netherlands; 1998:185-88.
    16. Wernegreen JJ, Riley MA: Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. / Mol Biol Evol 1999, 16:98-13.
    17. Nguyen L, Paulsen IT, Tchieu J, Hueck CJ, Saier MH: Phylogenetic analyses of the constituents of type III protein secretion systems. / J Mol Microbiol Biotechnol 2000, 2:125-44.
    18. Gualtieri G, Bisseling T: The evolution of nodulation. / Plant Mol Biol 2000, 42:181-94. CrossRef
    19. Boucher Y, Douady CJ, Papke RT, Walsh DA, Boudreau ME, Nesbo Cl, Case RJ, Doolittle WF: Lateral gene transfer and the origins of prokaryotic groups. / Annu Rev Genet 2003, 37:283-28. CrossRef
    20. Bittinger MA, Gross JA, Widom J, Clardy J, Handelsman J: Rhizobium etli CE3 carries vir gene homologs on a self-transmissible plasmid. / Mol Plant Microbe Interact 2000, 13:1019-021. CrossRef
    21. Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, Mccallum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, Bruijn FJ, Ronson CW: Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. / J Bacteriol 2002, 184:3086-095. CrossRef
    22. Gonzalez V, Bustos P, Ramirez-Romero MA, Medrano-Soto A, Salgado H, Hernandez-Gonzalez I, Hernandez-Celis JC, Quintero V, Moreno-Hagelsieb G, Girard L, Rodriguez O, Flores M, Cevallos MA, Collado-Vides J, Romero D, Davila G: The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. / Genome Biol 2003, 4:R36. CrossRef
    23. Martínez E, Palacios R, Sánchez F: Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. / J Bacteriol 1987, 169:2828-834.
    24. Velázquez E, Peix A, Zurdo-Pi?eiro Jl, Palomo Jl, Mateos PF, Rivas R, Mu?oz-Adelantado E, Toro N, García-Benavides P, Martínez-Molina E: The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hair roots in plants. / Mol Plant Microbe Interact 2005, 18:1325-332. CrossRef
    25. G?ttfert M, R?thlisberger S, Kündig C, Beck C, Marty R, Hennecke H: Potential symbiosis-specific genes uncovered by sequencing a 410-kb dna region of the Bradyrhizobium japonicum chromosome. / J Bacteriol 2001, 183:1405-412. CrossRef
    26. Putative genes and encoded proteins within the symbiotic gene region of Bradyrhizobium japonicum [http://www.biologie.tu-dresden.de/genetik/molgen/research/molgen-table1.pdf]
    27. Goodner B, / et al.: Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. / Science 2001, 294:2323-328. CrossRef
    28. Wood DW, / et al.: The genome of the natural genetic engineer Agrobacterium tumefaciens C58. / Science 2001, 294:2317-323. CrossRef
    29. Agrobacterium tumefaciens gene list separated by functional category [http://depts.washington.edu/agro/genomes/c58/supp/gene_list.txt]
    30. Schr?der G, Dehio C: Virulence-associated type IV secretion systems of Bartonella. / Trends Microbiol 2005, 13:336-42. CrossRef
    31. Boschiroli ML, Ouahrani-Bettache S, Foulongne V, Michaux-Charachon S, Bourg G, Allardet-Servent A, Cazevieille C, Lavigne JP, Liautard JP, Ramuz M, O'Callaghan D: Type IV secretion and Brucella virulence. / Vet Microbiol 2002, 90:341-48. CrossRef
    32. O'Callaghan D, Cazevieille C, Allardet-Servent A, Boschiroli ML, Bourg G, Foulongne V, Frutos P, Kulakov Y, Ramuz M: A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis . / Mol Biol 2002, 33:1210-220.
    33. Giraud E, / et al.: Legumes Symbioses: Absence of Nod Genes in Photosynthetic Bradyrhizobia. / Science 2007, 316:1307-312. CrossRef
    34. Wernegreen JJ, Harding EE, Riley MA: Rhizobium gone native: unexpected plasmid stability of indigenous R. leguminosarum . / Proc Natl Acad Sci USA 1997, 94:5483-488. CrossRef
    35. Haukka K, Lindstrom K, Young J: Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. / Appl Environ Microbiol 1998, 64:419-26.
    36. Sullivan JT, Ronson CW: Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a Phe-tRNA gene. / Proc Natl Acad Sci USA 1998, 95:5145-149. CrossRef
    37. Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SG: Computational inference of scenarios for alpha-proteobacterial genome evolution. / Proc Natl Acad Sci USA 2004, 101:9722-727. CrossRef
    38. Barcellos FG, Menna P, Hungria M, Batista JSS: Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous Sinorhizobium ( Ensifer ) fredii and Bradyrhizobium elkanii in a brazilian savannah soil. / Appl Environ Microbiol 2007, 73:2635-643. CrossRef
    39. Batista JSS, Barcellos FG, Mendes IC, Hungria M: Variability in Bradyrhizobium japonicum and B. elkanii seven years after introduction of both the exotic symbiont and the soybean host in a cerrados soil. / Microb Ecol 2007, 53:270-84. CrossRef
    40. Pei-Li L, Everhart DM, Farrand SK: Genetic and sequence analysis of the pTIC58 trb locus, encoding a mating-pair formation system related to members of the type IV secretion family. / J Bacteriol 1998, 180:6164-172.
    41. Surin BP, Downie JA: .Characterization of the Rhizobium leguminosarum genes nodLMN involved in efficient host-specific nodulation. / Mol Microbio 1988, 2:173-3. CrossRef
    42. Baev N, Schultze M, Barlier I, Ha DC, Virelizier H, Kondorosi E, Kondorosi A: Rhizobium nodM and nodN genes are common nod genes: nodM encodes functions for efficiency of nod signal production and bacteroid maturation. / J Bacteriol 1992, 174:7555-565.
    43. Batut J, Andersson SG, O'Callaghan D: The evolution of chronic infection strategies in the alpha-proteobacteria. / Nat Rev Microbiol 2004, 2:933-45. CrossRef
    44. Redmond JW, Batley M, Djordjevic MA, Roger W, Peter I, Kuempel L, Rolfe BG: Flavones induce expression of nodulation genes in Rhizobium. / Nature 1986, 323:632-35. CrossRef
    45. Firmin JL, Wilson KE, Rossen L, Johnston AWB: Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. / Nature 1986, 324:90-2. CrossRef
    46. Maddocks SE, Oyston PC: Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. / Microbiol 2008, 154:3609-623. CrossRef
    47. Perret X, Staehelin C, Broughton WJ: Molecular basis of symbiotic promiscuity. / Microbiol Mol Biol Rev 2000, 64:180-01. CrossRef
    48. Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E: Biogenesis, architecture, and function of bacterial type IV secretion systems. / Annu Rev Microbiol 2005, 59:451-85. CrossRef
    49. Dehio C: Infection-associated type IV secretion systems of Bartonella and their diverse roles in host cell interaction. / Cel Microbiol 2008, 10:1591-598. CrossRef
    50. Schulein G, Dehio C: The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. / Mol Microbiol 2002, 46:1053-7. CrossRef
    51. den Hartigh AB, Rolán HG, de Jong MF, Tsolis RM: VirB3 to VirB6 and VirB8 to VirB11, but not VirB7, are essential for mediating persistence of Brucella in the reticuloendothelial system. / J Bacteriol 2008, 190:4427-6. CrossRef
    52. Jones KM, Lloret J, Daniele JR, Walker GC: The type IV secretion system of Sinorhizobium meliloti strain 1021 is required for conjugation but not for intracellular symbiosis. / J Bacteriol 2007, 5:2133-138. CrossRef
    53. Hubber A, Vergunst AC, Sullivan JT, Hooykaas PJ, Ronson CW: Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. / Mol Microbiol 2004, 52:561-74. CrossRef
    54. Frank AC, Alsmark CM, Thollesson M, Andersson SG: Functional divergence and horizontal transfer of type IV secretion systems. / Mol Biol Evol 2005, 22:1325-336. CrossRef
    55. Genomic comparison between symbiotic and pathogenic bacteria database [http://www.bnf.lncc.br/comparative/]
    56. Williams KP, Sobral BW, Dickerman AW: A robust species tree for the alphaproteobacteria. / J Bacteriol 2007, 189:4578-586. CrossRef
    57. National Center for Biotecnology Information (NCBI) GenBank [http://www.ncbi.nlm.nih.gov/Genbank/index.html]
    58. Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N: The use of gene clusters to infer functional coupling. / Proc Natl Acad Sci USA 1999, 96:2896-901. CrossRef
    59. Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. / Nucl Acids Res 1997, 25:3389-402. CrossRef
    60. Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MDR, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo H, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJA, Zdobnov EM: The InterPro database, an integrated documentation resource for protein families, domains and functional sites. / Nucl Acids Res 2001, 29:37-0. CrossRef
    61. Gardy JL, Spencer C, Wang K, Ester M, Tusnády GE, Simon I, Hua S, deFays K, Lambert C, Nakai K, Brinkman FSL: PSORT-B: improving protein subcellular localization prediction for gram-negative bacteria. / Nucl Acids Res 2003, 31:3613-617. CrossRef
    62. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. / Nucl Acids Res 2000, 28:27-0. CrossRef
    63. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database: an updated version includes eukaryotes. / BMC Bioinf 2003, 4:41. CrossRef
    64. Saier MHJ, Tran CV, Barabote RD: TCDB: the Transporter Classification Database for membrane transport protein analyses and information. / Nucl Acids Res 2006, 34:D181-D186. CrossRef
    65. Bairoch A, Apweiler R: The Swiss-Prot protein sequence database: its relevance to human molecular medical research. / J Mol Med 1997, 75:312-16.
    66. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. / Mol Biol Evol 1987, 4:406-5.
    67. Felsenstein J: PHYLIP - Phylogeny Inference Package (Version 3.2). / Cladistics 1989, 5:164-66.
    68. PHYLIP - Phylogeny Inference Package [http://evolution.genetics.washington.edu/phylip.html]
  • 作者单位:Fabíola M Carvalho (1)
    Rangel C Souza (1)
    Fernando G Barcellos (2)
    Mariangela Hungria (3)
    Ana Tereza R Vasconcelos (1) (2)

    1. Laboratório Nacional de Computa??o Científica, Laboratório de Bioinformática, Av Getúlio Vargas 333, 25651-075, Petrópolis, Rio de Janeiro, Brazil
    2. Instituto Nacional de Metrologia, INMETRO, Av Nossa Senhora das Gra?as 50 - prédio 6, 25250-020, Xerém - Duque de Caxias, Rio de Janeiro, Brazil
    3. Embrapa Soja, Cx Postal 231, 86001-970, Londrina, Paraná, Brazil
  • ISSN:1471-2180
文摘
Background Species belonging to the Rhizobiales are intriguing and extensively researched for including both bacteria with the ability to fix nitrogen when in symbiosis with leguminous plants and pathogenic bacteria to animals and plants. Similarities between the strategies adopted by pathogenic and symbiotic Rhizobiales have been described, as well as high variability related to events of horizontal gene transfer. Although it is well known that chromosomal rearrangements, mutations and horizontal gene transfer influence the dynamics of bacterial genomes, in Rhizobiales, the scenario that determine pathogenic or symbiotic lifestyle are not clear and there are very few studies of comparative genomic between these classes of prokaryotic microorganisms trying to delineate the evolutionary characterization of symbiosis and pathogenesis. Results Non-symbiotic nitrogen-fixing bacteria and bacteria involved in bioremediation closer to symbionts and pathogens in study may assist in the origin and ancestry genes and the gene flow occurring in Rhizobiales. The genomic comparisons of 19 species of Rhizobiales, including nitrogen-fixing, bioremediators and pathogens resulted in 33 common clusters to biological nitrogen fixation and pathogenesis, 15 clusters exclusive to all nitrogen-fixing bacteria and bacteria involved in bioremediation, 13 clusters found in only some nitrogen-fixing and bioremediation bacteria, 01 cluster exclusive to some symbionts, and 01 cluster found only in some pathogens analyzed. In BBH performed to all strains studied, 77 common genes were obtained, 17 of which were related to biological nitrogen fixation and pathogenesis. Phylogenetic reconstructions for Fix, Nif, Nod, Vir, and Trb showed possible horizontal gene transfer events, grouping species of different phenotypes. Conclusions The presence of symbiotic and virulence genes in both pathogens and symbionts does not seem to be the only determinant factor for lifestyle evolution in these microorganisms, although they may act in common stages of host infection. The phylogenetic analysis for many distinct operons involved in these processes emphasizes the relevance of horizontal gene transfer events in the symbiotic and pathogenic similarity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700