Create, activate, destroy, repeat: Cdk1 controls proliferation by limiting transcription factor activity
详细信息    查看全文
  • 作者:Jennifer A. Benanti
  • 关键词:Cell cycle ; Gene expression ; Cyclin ; dependent kinase ; Hcm1 ; Calcineurin
  • 刊名:Current Genetics
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:62
  • 期:2
  • 页码:271-276
  • 全文大小:879 KB
  • 参考文献:Ali F, Hindley C, McDowell G et al (2011) Cell-cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis. Development 138:4267–4277. doi:10.​1242/​dev.​067900 CrossRef PubMed PubMedCentral
    Amon A, Tyers M, Futcher B, Nasmyth K (1993) Mechanisms that help the yeast cell-cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74:993–1007CrossRef PubMed
    Arsenault HE, Roy J, Mapa CE et al (2015) Hcm1 integrates signals from Cdk1 and Calcineurin to control cell proliferation. Mol Biol Cell 26:3570–3577. doi:10.​1091/​mbc.​E15-07-0469 CrossRef PubMed PubMedCentral
    Bertoli C, Skotheim JM, de Bruin RAM (2013) Control of cell-cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol 14:518–528. doi:10.​1038/​nrm3629 CrossRef PubMed PubMedCentral
    Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8:149–160. doi:10.​1038/​nrm2105 CrossRef PubMed
    Cho RJ, Campbell MJ, Winzeler EA et al (1998) A genome-wide transcriptional analysis of the mitotic cell-cycle. Mol Cell 2:65–73CrossRef PubMed
    Cho RJ, Huang M, Campbell MJ et al (2001) Transcriptional regulation and function during the human cell-cycle. Nat Genet 27:48–54. doi:10.​1038/​83751 PubMed
    Costanzo M, Nishikawa JL, Tang X et al (2004) CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117:899–913. doi:10.​1016/​j.​cell.​2004.​05.​024 CrossRef PubMed
    Cyert MS, Philpott CC (2013) Regulation of cation balance in Saccharomyces cerevisiae. Genetics 193:677–713. doi:10.​1534/​genetics.​112.​147207 CrossRef PubMed PubMedCentral
    Daniel JA, Keyes BE, Ng YPY et al (2006) Diverse functions of spindle assembly checkpoint genes in Saccharomyces cerevisiae. Genetics 172:53–65. doi:10.​1534/​genetics.​105.​046441 CrossRef PubMed PubMedCentral
    de Bruin RAM, McDonald WH, Kalashnikova TI et al (2004) Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117:887–898. doi:10.​1016/​j.​cell.​2004.​05.​025 CrossRef PubMed
    Di Talia S, Skotheim JM, Bean JM et al (2007) The effects of molecular noise and size control on variability in the budding yeast cell-cycle. Nature 448:947–951. doi:10.​1038/​nature06072 CrossRef PubMed
    Domingo-Sananes MR, Kapuy O, Hunt T, Novak B (2011) Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis. Philos Trans R Soc B Biol Sci 366:3584–3594. doi:10.​1098/​rstb.​2011.​0087 CrossRef
    Edenberg ER, Mark KG, Toczyski DP (2015) Ndd1 turnover by SCF(Grr1) is inhibited by the DNA damage checkpoint in Saccharomyces cerevisiae. PLoS Genet 11:e1005162. doi:10.​1371/​journal.​pgen.​1005162 CrossRef PubMed PubMedCentral
    Eser U, Falleur-Fettig M, Johnson A, Skotheim JM (2011) Commitment to a cellular transition precedes genome-wide transcriptional change. Mol Cell 43:515–527. doi:10.​1016/​j.​molcel.​2011.​06.​024 CrossRef PubMed PubMedCentral
    Farcasanu IC, Hirata D, Tsuchiya E et al (1995) Protein phosphatase 2B of Saccharomyces cerevisiae is required for tolerance to manganese, in blocking the entry of ions into the cells. Eur J Biochem 232:712–717CrossRef PubMed
    Geymonat M, Spanos A, Wells GP et al (2004) Clb6/Cdc28 and Cdc14 regulate phosphorylation status and cellular localization of Swi6. Mol Cell Biol 24:2277–2285CrossRef PubMed PubMedCentral
    Goldman A, Roy J, Bodenmiller B et al (2014) The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity. Mol Cell. doi:10.​1016/​j.​molcel.​2014.​05.​012 PubMed PubMedCentral
    Grallert A, Boke E, Hagting A et al (2015) A PP1–PP2A phosphatase relay controls mitotic progression. Nature 517:94–98. doi:10.​1038/​nature14019 CrossRef PubMed PubMedCentral
    Grant GD, Brooks L, Zhang X et al (2013) Identification of cell-cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell. doi:10.​1091/​mbc.​E13-05-0264 PubMed PubMedCentral
    Guan Y, Dunham MJ, Troyanskaya OG, Caudy AA (2013) Comparative gene expression between two yeast species. BMC Genom 14:33. doi:10.​1186/​1471-2164-14-33 CrossRef
    Haase SB, Reed SI (1999) Evidence that a free-running oscillator drives G1 events in the budding yeast cell-cycle. Nature 401:394–397. doi:10.​1038/​43927 PubMed
    Haase SB, Wittenberg C (2014) Topology and control of the cell-cycle-regulated transcriptional circuitry. Genetics 196:65–90. doi:10.​1534/​genetics.​113.​152595 CrossRef PubMed PubMedCentral
    Harbison CT, Gordon DB, Lee TI et al (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431:99–104. doi:10.​1038/​nature02800 CrossRef PubMed PubMedCentral
    Holt LJ, Tuch BB, Villén J et al (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325:1682–1686. doi:10.​1126/​science.​1172867 CrossRef PubMed PubMedCentral
    Horak CE, Luscombe NM, Qian J et al (2002) Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev 16:3017–3033. doi:10.​1101/​gad.​1039602 CrossRef PubMed PubMedCentral
    Hu Z, Killion PJ, Iyer VR (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39:683–687. doi:10.​1038/​ng2012 CrossRef PubMed
    Iyer VR, Horak CE, Scafe CS et al (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538. doi:10.​1038/​35054095 CrossRef PubMed
    Johnson A, Skotheim JM (2013) Start and the restriction point. Curr Opin Cell Biol 25:717–723. doi:10.​1016/​j.​ceb.​2013.​07.​010 CrossRef PubMed
    Kemmeren P, Sameith K, van de Pasch LAL et al (2014) Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell 157:740–752. doi:10.​1016/​j.​cell.​2014.​02.​054 CrossRef PubMed
    Kishi T, Ikeda A, Koyama N et al (2008) A refined two-hybrid system reveals that SCFCdc4-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry. Proc Nat Acad Sci. doi:10.​1073/​pnas.​0806253105 PubMed PubMedCentral
    Koch C, Moll T, Neuberg M et al (1993) A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261:1551–1557CrossRef PubMed
    Koranda M, Schleiffer A, Endler L, Ammerer G (2000) Forkhead-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature 406:94–98. doi:10.​1038/​35017589 CrossRef PubMed
    Kumar R, Reynolds DM, Shevchenko A et al (2000) Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr Biol 10:896–906CrossRef PubMed
    Landry BD, Mapa CE, Arsenault HE et al (2014) Regulation of a transcription factor network by Cdk1 coordinates late cell-cycle gene expression. EMBO J 33:1044–1060. doi:10.​1002/​embj.​201386877 CrossRef PubMed PubMedCentral
    Lee TI, Rinaldi NJ, Robert F et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804. doi:10.​1126/​science.​1075090 CrossRef PubMed
    Lee CW, Ferreon JC, Ferreon ACM et al (2010) Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proc Nat Acad Sci 107:19290–19295. doi:10.​1073/​pnas.​1013078107 CrossRef PubMed PubMedCentral
    Levin DE (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175. doi:10.​1534/​genetics.​111.​128264 CrossRef PubMed PubMedCentral
    Lu Y, Mahony S, Benos PV et al (2007) Combined analysis reveals a core set of cycling genes. Genome Biol 8:R146. doi:10.​1186/​gb-2007-8-7-r146 CrossRef PubMed PubMedCentral
    Moll T, Tebb G, Surana U et al (1991) The role of phosphorylation and the CDC28 protein kinase in cell-cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66:743–758CrossRef PubMed
    Nakamura T, Liu Y, Hirata D et al (1993) Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J 12:4063–4071PubMed PubMedCentral
    Nishida N, Jing D, Kuroda K, Ueda M (2014) Activation of signaling pathways related to cell wall integrity and multidrug resistance by organic solvent in Saccharomyces cerevisiae. Curr Genet 60:149–162. doi:10.​1007/​s00294-013-0419-5 CrossRef PubMed
    Nugroho TT, Mendenhall MD (1994) An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. Mol Cell Biol 14:3320–3328CrossRef PubMed PubMedCentral
    O’Conallain C, Doolin MT, Taggart C et al (1999) Regulated nuclear localisation of the yeast transcription factor Ace2p controls expression of chitinase (CTS1) in Saccharomyces cerevisiae. Mol Gen Genet 262:275–282CrossRef PubMed
    Okamura H, Aramburu J, García-Rodríguez C et al (2000) Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol Cell 6:539–550CrossRef PubMed
    Orlando DA, Lin CY, Bernard A et al (2008) Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 453:944–947. doi:10.​1038/​nature06955 CrossRef PubMed PubMedCentral
    Ostapenko D, Solomon MJ (2011) Anaphase promoting complex-dependent degradation of transcriptional repressors Nrm1 and Yhp1 in Saccharomyces cerevisiae. Mol Biol Cell 22:2175–2184. doi:10.​1091/​mbc.​E11-01-0031 CrossRef PubMed PubMedCentral
    Pic-Taylor A, Darieva Z, Morgan BA, Sharrocks AD (2004) Regulation of cell-cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the Forkhead transcription factor Fkh2p. Mol Cell Biol 24:10036–10046. doi:10.​1128/​MCB.​24.​22.​10036-10046.​2004 CrossRef PubMed PubMedCentral
    Pramila T, Miles S, GuhaThakurta D et al (2002) Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell-cycle. Genes Dev 16:3034–3045. doi:10.​1101/​gad.​1034302 CrossRef PubMed PubMedCentral
    Pramila T, Wu W, Miles S et al (2006) The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell-cycle. Genes Dev 20:2266–2278. doi:10.​1101/​gad.​1450606 CrossRef PubMed PubMedCentral
    Pufall MA, Lee GM, Nelson ML et al (2005) Variable control of Ets-1 DNA binding by multiple phosphates in an unstructured region. Science 309:142–145. doi:10.​1126/​science.​1111915 CrossRef PubMed
    Ren B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309. doi:10.​1126/​science.​290.​5500.​2306 CrossRef PubMed
    Reynolds D (2003) Recruitment of Thr 319-phosphorylated Ndd1p to the FHA domain of Fkh2p requires Clbkinase activity: a mechanism for CLB cluster gene activation. Genes Dev 17:1789–1802. doi:10.​1101/​gad.​1074103 CrossRef PubMed PubMedCentral
    Rodriguez-Colman MJ, Reverter-Branchat G, Sorolla MA et al (2010) The forkhead transcription factor Hcm1 promotes mitochondrial biogenesis and stress resistance in yeast. J Biol Chem 285:37092–37101. doi:10.​1074/​jbc.​M110.​174763 CrossRef PubMed PubMedCentral
    Rodriguez-Colman MJ, Sorolla MA, Vall-Llaura N et al (2013) The FOX transcription factor Hcm1 regulates oxidative metabolism in response to early nutrient limitation in yeast. Role of Snf1 and Tor1/Sch9 kinases. Biochim Biophys Acta 1833:2004–2015. doi:10.​1016/​j.​bbamcr.​2013.​02.​015 CrossRef PubMed
    Sajman J, Zenvirth D, Nitzan M et al (2015) Degradation of Ndd1 by APC/C. Nat Commun 6:1–10. doi:10.​1038/​ncomms8075 CrossRef
    Sidorova JM, Mikesell GE, Breeden LL (1995) Cell-cycle-regulated phosphorylation of Swi6 controls its nuclear localization. Mol Biol Cell 6:1641–1658CrossRef PubMed PubMedCentral
    Siegmund RF, Nasmyth KA (1996) The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6. Mol Cell Biol 16:2647–2655CrossRef PubMed PubMedCentral
    Simmons Kovacs LA, Mayhew MB, Orlando DA et al (2012) Cyclin-dependent kinases are regulators and effectors of oscillations driven by a transcription factor network. Mol Cell 45:669–679. doi:10.​1016/​j.​molcel.​2011.​12.​033 CrossRef PubMed
    Simon I, Barnett J, Hannett N et al (2001) Serial regulation of transcriptional regulators in the yeast cell-cycle. Cell 106:697–708CrossRef PubMed
    Skotheim JM, Di Talia S, Siggia ED, Cross FR (2008) Positive feedback of G1 cyclins ensures coherent cell-cycle entry. Nature 454:291–296. doi:10.​1038/​nature07118 CrossRef PubMed PubMedCentral
    Spellman PT, Sherlock G, Zhang MQ et al (1998) Comprehensive identification of cell-cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297CrossRef PubMed PubMedCentral
    Ubersax JA, Woodbury EL, Quang PN et al (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425:859–864. doi:10.​1038/​nature02062 CrossRef PubMed
    Viladevall L, Serrano R, Ruiz A et al (2004) Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J Biol Chem 279:43614–43624. doi:10.​1074/​jbc.​M403606200 CrossRef PubMed
    Visintin R, Craig K, Hwang ES et al (1998) The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell 2:709–718CrossRef PubMed
    Whitfield ML, Sherlock G, Saldanha AJ et al (2002) Identification of genes periodically expressed in the human cell-cycle and their expression in tumors. Mol Biol Cell 13:1977–2000. doi:10.​1091/​mbc.​02-02-0030 CrossRef PubMed PubMedCentral
    Wurzenberger C, Gerlich DW (2011) Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 12:469–482. doi:10.​1038/​nrm3149 CrossRef PubMed
  • 作者单位:Jennifer A. Benanti (1)

    1. Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbial Genetics and Genomics
    Microbiology
    Biochemistry
    Cell Biology
    Plant Sciences
    Proteomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0983
文摘
Progression through the cell cycle is controlled by a network of transcription factors that coordinate gene expression with cell-cycle events. One transcriptional activator in this network in budding yeast is the forkhead protein Hcm1, which controls the expression of genes that are transcribed during S-phase. Hcm1 activity is coordinated with the cell cycle via its regulation by cyclin-dependent kinase (Cdk1), which both activates Hcm1 and targets it for degradation, through phosphorylation of distinct sites. The mechanisms controlling the differential phosphorylation timing of the activating and destabilizing phosphosites are not clear. However, a recent study shows that the phosphatase calcineurin specifically removes activating phosphates from Hcm1 when cells are exposed to environmental stress, thus extinguishing its activity and slowing proliferation under unfavorable growth conditions. This regulatory mechanism, whereby a phosphatase actively alters the distribution of phosphosites on a cell cycle-regulatory transcription factor to elicit a change in cellular proliferation, adds an additional layer of complexity to the regulatory network controlling the cell cycle. Furthermore, this regulatory paradigm is likely to be a conserved mode of phosphoregulation that controls the cell cycle in diverse systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700