In vivo postprandial lipid partitioning in liver and skeletal muscle in prediabetic and diabetic rats
详细信息    查看全文
  • 作者:R. A. M. Jonkers (1)
    L. J. C. van Loon (2)
    K. Nicolay (1)
    J. J. Prompers (1)
  • 关键词:Carbon ; 13 ; Insulin resistance ; Intrahepatocellular lipids ; Intramyocellular lipids ; Lipid uptake ; Magnetic resonance spectroscopy ; Prediabetes ; Type 2 diabetes ; ZDF rat
  • 刊名:Diabetologia
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:56
  • 期:3
  • 页码:618-626
  • 全文大小:272KB
  • 参考文献:1. Krssak M, Falk Petersen K, Dresner A et al (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42:113-16 10.1007/s001250051123">CrossRef
    2. Perseghin G, Scifo P, de Cobelli F et al (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48:1600-606 10.2337/diabetes.48.8.1600">CrossRef
    3. Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC (2003) Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab 285:E906–E916
    4. Ryysy L, Hakkinen AM, Goto T et al (2000) Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 49:749-58 10.2337/diabetes.49.5.749">CrossRef
    5. Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267-277 10.1016/S0140-6736(10)60408-4">CrossRef
    6. Bell JA, Volpi E, Fujita S, Cadenas JG, Rasmussen BB (2006) Dysregulation of muscle fatty acid metabolism in type 2 diabetes is independent of malonyl-CoA. Diabetologia 49:2144-152 10.1007/s00125-006-0362-9">CrossRef
    7. Bonen A, Parolin ML, Steinberg GR et al (2004) Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J 18:1144-146
    8. Hegarty BD, Cooney GJ, Kraegen EW, Furler SM (2002) Increased efficiency of fatty acid uptake contributes to lipid accumulation in skeletal muscle of high fat-fed insulin-resistant rats. Diabetes 51:1477-484 10.2337/diabetes.51.5.1477">CrossRef
    9. Kelley DE, Simoneau JA (1994) Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Invest 94:2349-356 10.1172/JCI117600">CrossRef
    10. Luiken JJ, Arumugam Y, Dyck DJ et al (2001) Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem 276:40567-0573 10.1074/jbc.M100052200">CrossRef
    11. Moors CC, van der Zijl NJ, Diamant M, Blaak EE, Goossens GH (2012) Impaired insulin sensitivity is accompanied by disturbances in skeletal muscle fatty acid handling in subjects with impaired glucose metabolism. Int J Obes (Lond) 36:709-17 10.1038/ijo.2011.123">CrossRef
    12. Ravikumar B, Carey PE, Snaar JE et al (2005) Real-time assessment of postprandial fat storage in liver and skeletal muscle in health and type 2 diabetes. Am J Physiol Endocrinol Metab 288:E789–E797 10.1152/ajpendo.00557.2004">CrossRef
    13. Steinberg GR, Parolin ML, Heigenhauser GJ, Dyck DJ (2002) Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am J Physiol Endocrinol Metab 283:E187–E192
    14. Turcotte LP, Swenberger JR, Zavitz Tucker M, Yee AJ (2001) Increased fatty acid uptake and altered fatty acid metabolism in insulin-resistant muscle of obese Zucker rats. Diabetes 50:1389-396 10.2337/diabetes.50.6.1389">CrossRef
    15. van Hees AM, Jans A, Hul GB, Roche HM, Saris WH, Blaak EE (2011) Skeletal muscle fatty acid handling in insulin resistant men. Obesity 19:1350-359 10.1038/oby.2011.10">CrossRef
    16. Capaldo B, Napoli R, Di Marino L, Picardi A, Riccardi G, Sacca L (1988) Quantitation of forearm glucose and free fatty acid (FFA) disposal in normal subjects and type II diabetic patients: evidence against an essential role for FFA in the pathogenesis of insulin resistance. J Clin Endocrinol Metab 67:893-98 10.1210/jcem-67-5-893">CrossRef
    17. Gaster M, Rustan AC, Aas V, Beck-Nielsen H (2004) Reduced lipid oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin: evidence from cultured myotubes. Diabetes 53:542-48 10.2337/diabetes.53.3.542">CrossRef
    18. Kelley DE, Goodpaster B, Wing RR, Simoneau JA (1999) Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 277:E1130–E1141
    19. Labbe SM, Croteau E, Grenier-Larouche T et al (2011) Normal postprandial nonesterified fatty acid uptake in muscles despite increased circulating fatty acids in type 2 diabetes. Diabetes 60:408-15 10.2337/db10-0997">CrossRef
    20. Lopez-Soriano EJ, Carbo N, Argiles JM (1991) Lipid metabolism in the obese Zucker rat. Disposal of an oral [14C]triolein load and lipoprotein lipase activity. Biochem J 274:651-56
    21. Bessesen DH, Rupp CL, Eckel RH (1995) Dietary fat is shunted away from oxidation, toward storage in obese Zucker rats. Obes Res 3:179-89 10.1002/j.1550-8528.1995.tb00134.x">CrossRef
    22. Blaak EE, Wagenmakers AJ (2002) The fate of [U-(13)C]palmitate extracted by skeletal muscle in subjects with type 2 diabetes and control subjects. Diabetes 51:784-89 10.2337/diabetes.51.3.784">CrossRef
    23. Blaak EE, Wagenmakers AJ, Glatz JF et al (2000) Plasma FFA utilization and fatty acid-binding protein content are diminished in type 2 diabetic muscle. Am J Physiol Endocrinol Metab 279:E146–E154
    24. Cha BS, Ciaraldi TP, Park KS, Carter L, Mudaliar SR, Henry RR (2005) Impaired fatty acid metabolism in type 2 diabetic skeletal muscle cells is reversed by PPARgamma agonists. Am J Physiol Endocrinol Metab 289:E151–E159 10.1152/ajpendo.00141.2004">CrossRef
    25. Mensink M, Blaak EE, van Baak MA, Wagenmakers AJ, Saris WH (2001) Plasma free fatty acid uptake and oxidation are already diminished in subjects at high risk for developing type 2 diabetes. Diabetes 50:2548-554 10.2337/diabetes.50.11.2548">CrossRef
    26. Perreault L, Bergman BC, Hunerdosse DM, Eckel RH (2010) Altered intramuscular lipid metabolism relates to diminished insulin action in men, but not women, in progression to diabetes. Obesity 18:2093-100 10.1038/oby.2010.76">CrossRef
    27. Turpeinen AK, Takala TO, Nuutila P et al (1999) Impaired free fatty acid uptake in skeletal muscle but not in myocardium in patients with impaired glucose tolerance: studies with PET and 14(R, S)-[18?F]fluoro-6-thia-heptadecanoic acid. Diabetes 48:1245-250 10.2337/diabetes.48.6.1245">CrossRef
    28. Wilmsen HM, Ciaraldi TP, Carter L, Reehman N, Mudaliar SR, Henry RR (2003) Thiazolidinediones upregulate impaired fatty acid uptake in skeletal muscle of type 2 diabetic subjects. Am J Physiol Endocrinol Metab 285:E354–E362
    29. Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA (2000) Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279:E1039–E1044
    30. Muurling M, van den Hoek AM, Mensink RP et al (2004) Overexpression of APOC1 in obob mice leads to hepatic steatosis and severe hepatic insulin resistance. J Lipid Res 45:9-6 10.1194/jlr.M300240-JLR200">CrossRef
    31. Berk PD, Zhou SL, Kiang CL, Stump D, Bradbury M, Isola LM (1997) Uptake of long chain free fatty acids is selectively up-regulated in adipocytes of Zucker rats with genetic obesity and non-insulin-dependent diabetes mellitus. J Biol Chem 272:8830-835 10.1074/jbc.272.13.8830">CrossRef
    32. Adiels M, Taskinen MR, Packard C et al (2006) Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 49:755-65 10.1007/s00125-005-0125-z">CrossRef
    33. Bourgeois CS, Wiggins D, Hems R, Gibbons GF (1995) VLDL output by hepatocytes from obese Zucker rats is resistant to the inhibitory effect of insulin. Am J Physiol Endocrinol Metab 269:E208–E215
    34. Cohn JS, Patterson BW, Uffelman KD, Davignon J, Steiner G (2004) Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J Clin Endocrinol Metab 89:3949-955 10.1210/jc.2003-032056">CrossRef
    35. Jonkers RA, Geraedts TR, van Loon LJ, Nicolay K, Prompers JJ (2012) Multitissue assessment of in vivo postprandial intracellular lipid partitioning in rats using localized 1H-[13C] magnetic resonance spectroscopy. Magn Reson Med 68:997-006 10.1002/mrm.23321">CrossRef
    36. Clark JB, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med 173:68-5
    37. Etgen GJ, Oldham BA (2000) Profiling of Zucker diabetic fatty rats in their progression to the overt diabetic state. Metabolism 49:684-88 10.1016/S0026-0495(00)80049-9">CrossRef
    38. Vanhamme L, van den Boogaart A, van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35-3 10.1006/jmre.1997.1244">CrossRef
    39. De Feyter HM, Schaart G, Hesselink MK, Schrauwen P, Nicolay K, Prompers JJ (2006) Regional variations in intramyocellular lipid concentration correlate with muscle fiber type distribution in rat tibialis anterior muscle. Magn Reson Med 56:19-5 10.1002/mrm.20924">CrossRef
    40. De Feyter HM, Lenaers E, Houten SM et al (2008) Increased intramyocellular lipid content but normal skeletal muscle mitochondrial oxidative capacity throughout the pathogenesis of type 2 diabetes. FASEB J 22:3947-955 10.1096/fj.08-112318">CrossRef
    41. Frayn KN (2002) Adipose tissue as a buffer for daily lipid flux. Diabetologia 45:1201-210 10.1007/s00125-002-0873-y">CrossRef
    42. Lambert JE, Parks EJ (2012) Postprandial metabolism of meal triglyceride in humans. Biochim Biophys Acta 1821:721-26 10.1016/j.bbalip.2012.01.006">CrossRef
    43. Yost TJ, Froyd KK, Jensen DR, Eckel RH (1995) Change in skeletal muscle lipoprotein lipase activity in response to insulin/glucose in non-insulin-dependent diabetes mellitus. Metabolism 44:786-90 10.1016/0026-0495(95)90193-0">CrossRef
    44. Bonen A, Campbell SE, Benton CR et al (2004) Regulation of fatty acid transport by fatty acid translocase/CD36. Proc Nutr Soc 63:245-49 10.1079/PNS2004331">CrossRef
    45. Chabowski A, Chatham JC, Tandon NN et al (2006) Fatty acid transport and FAT/CD36 are increased in red but not in white skeletal muscle of ZDF rats. Am J Physiol Endocrinol Metab 291:E675–E682 10.1152/ajpendo.00096.2006">CrossRef
    46. Keesey RE, Swiergiel AH, Corbett SW (1990) Contribution of spontaneous activity to daily energy expenditure of adult obese and lean Zucker rats. Physiol Behav 48:327-31 10.1016/0031-9384(90)90322-U">CrossRef
  • 作者单位:R. A. M. Jonkers (1)
    L. J. C. van Loon (2)
    K. Nicolay (1)
    J. J. Prompers (1)

    1. Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
    2. NUTRIM School for Nutrition, Toxicology and Metabolism, Department of Human Movement Sciences, Maastricht University Medical Centre+, Maastricht, the Netherlands
  • ISSN:1432-0428
文摘
Aims/hypothesis Insulin resistance and type 2 diabetes have been associated with ectopic lipid deposition. This study investigates the derangements in postprandial lipid handling in liver and skeletal muscle tissue at different stages during the pathogenesis of type 2 diabetes in a rat model. Methods Four groups (n--) of male Zucker diabetic fatty rats were used for this study: prediabetic fa/fa rats and healthy fa/+ littermates at the age of 6?weeks, and diabetic fa/fa rats and healthy fa/+ littermates at the age of 12?weeks. In vivo 1H-[13C] magnetic resonance spectroscopy measurements were performed in liver and tibialis anterior muscle at baseline and 4, 24 and 48?h after oral administration of 1.5?g [U-13C]algal lipid mixture per kilogram body weight. Total and 13C-labelled intracellular lipid contents were determined from the magnetic resonance spectra. Results In both prediabetic and diabetic rats, total lipid contents in muscle and liver were substantially higher than in healthy controls and this was accompanied by a 2.3-fold greater postprandial lipid uptake in the liver (p-lt;-.001). Interestingly, in prediabetic rats, skeletal muscle appeared to be protected from excess lipid uptake whereas after developing overt diabetes muscle lipid uptake was 3.4-fold higher than in controls (p-lt;-.05). Muscle lipid use was significantly lower in prediabetic and diabetic muscle, indicative of impairments in lipid oxidation. Conclusions/interpretation In vivo postprandial lipid handling is disturbed in both liver and skeletal muscle tissue in prediabetic and diabetic rats, but the uptake of dietary lipids in muscle is only increased after the development of overt diabetes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700