Effects of pulse plating parameters on the microstructure and properties of high frequency pulse electrodeposited Ni–Co/ZrO2 nanocomposite coatings
详细信息    查看全文
  • 作者:Yancheng Jiang ; Yunhua Xu ; Mei Wang…
  • 刊名:Journal of Materials Science: Materials in Electronics
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:28
  • 期:1
  • 页码:610-616
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Optical and Electronic Materials; Characterization and Evaluation of Materials;
  • 出版者:Springer US
  • ISSN:1573-482X
  • 卷排序:28
文摘
Ni–Co/ZrO2 nanocomposite coatings were fabricated in a modified Watt’s bath by using high frequency pulse electrodeposition and the effects of pulse parameters such as frequency and duty cycle on the microstructure and properties were investigated. The surface morphology, phase structure, and microhardness of the Ni–Co/ZrO2 nanocomposite coatings were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray diffraction and Vickers’ microhardness tester. The corrosion behaviour of the nanocomposites was evaluated by electrochemical impedance spectroscopy in the 3.5 wt% NaCl solution. The results revealed that increasing frequency and duty cycle resulted in a change of morphology from rough and porous structure to compact and homogeneous structure and reduced the ratio of relative intensity I(200)/I(111) of the Ni–Co/ZrO2 nanocomposites by intervening the adsorption–desorption of interfacial inhibitors at the cathode/solution interface. Furthermore, the effects of frequency and duty cycle on the microhardness of Ni–Co/ZrO2 nanocomposites should be associated with the ZrO2 nanoparticles according to dispersion strengthening from Orowan mechanism. It has been found that the corrosion resistance of the nanocomposites in 3.5 wt% NaCl solution depended on the incorporation of ZrO2 nanoparticles and the phase structure of Ni–Co/ZrO2 nanocomposites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700