Contribution of visual velocity and displacement cues to human balancing of support surface tilt
详细信息    查看全文
  • 作者:Lorenz Assl?nder (1) (2)
    Georg Hettich (1) (2)
    Albert Gollhofer (2)
    Thomas Mergner (1)
  • 关键词:Humans ; Posture control ; Multisensory integration ; Visual velocity cues ; Stroboscopic illumination
  • 刊名:Experimental Brain Research
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:228
  • 期:3
  • 页码:297-304
  • 全文大小:423KB
  • 参考文献:1. Amblard B, Crémieux J, Marchand AR, Carblanc A (1985) Lateral orientation and stabilization of human stance: static versus dynamic visual cues. Exp Brain Res 61:21-7 CrossRef
    2. Bach M, Kommerell G (1998) Determining visual acuity using European normal values: scientific principles and possibilities for automatic measurement. Klinische Monatsbl?tter für Augenheilkunde 212:190-95 CrossRef
    3. Berthoz A, Melvill Jones G (1985) Adaptive mechanisms in gaze control. Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam, pp 106-08
    4. Bles W, Kapteyn TS, Brandt T, Arnold F (1958) The mechanism of physiological height vertigo. II. Posturography. Acta Otolaryngol 89:534-40 CrossRef
    5. Blümle A, Maurer C, Schweigart G, Mergner T (2006) A cognitive intersensory interaction mechanism in human postural control. Exp Brain Res 173:357-63 CrossRef
    6. Bronstein AM (1986) Suppression of visually evoked postural responses. Exp Brain Res 63:655-58 CrossRef
    7. Croft T (1971) Failure of visual estimation of motion under strobe. Nat 5302:397 CrossRef
    8. Flandrin JM, Courjon JH, Magnin M, Arzi M (1990) Horizontal optokinetic responses under stroboscopic illumination in cat, monkey and man. Exp Brain Res 81:59-9 CrossRef
    9. Gibson JJ (1950) The perception of the visual world. Houghton Mifflin Company, Boston
    10. Guerraz M, Thilo KV, Bronstein M, Gresty M (2001) Influence of action and expectation on visual control of posture. Brain Res Cogn Brain Res 11:259-66 CrossRef
    11. Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertungen bei der Bewegungsperzeption des Rüsselk?fers / Chlorophanus. Zeitschrift für Naturforschung 11b:513-524 (Systems theory analysis of time, sequence, and sign evaluation in the motion perception of the proboscis beetle / Chlorophanus)
    12. Horak F, Macpherson J (1996) Postural orientation and equilibrium. In: Rowell L, Shepherd J (eds) Handbook of physiology 1. Exercise: regulation and integration of multiple systems. Oxford University Press, New York, pp 255-92
    13. Jeka JJ, Oie KS, Kiemel T (2000) Multisensory information for human postural control: integrating touch and vision. Exp Brain Res 134:107-25 CrossRef
    14. Jeka JJ, Kiemel T, Creath R, Horak F, Peterka RJ (2004) Controlling human upright posture: velocity information is more accurate than position or acceleration. J Neurophysiol 92:2368-379 CrossRef
    15. Koenderink JJ (1986) Optic flow. Vis Res 26:161-79 CrossRef
    16. Koffka K (1931) Die Wahrnehmung von Bewegung. In: Bethe A (ed) Handbuch der normalen und pathologischen Physiologie, vol XII/2. Springer, Berlin, pp 1166-214
    17. Korte A (1915) Kinematoskopische Untersuchungen. Z Psychol 72:193-06
    18. Kuo AD (2005) An optimal state estimation model of sensory integration in human postural balance. J Neur Eng 2:235-49 CrossRef
    19. Maurer C, Mergner T, Bolha B, Hlavacka F (2000) Vestibular, visual, and somatosensory contributions to human control of upright stance. Neursci Lett 281:99-02 CrossRef
    20. Maurer C, Mergner T, Peterka RJ (2006) Multisensory control of human upright stance. Exp Brain Res 171:231-50 CrossRef
    21. Mergner T (2010) A neurological view on reactive human stance control. Ann Rev Control 34:177-98 CrossRef
    22. Mergner T, Becker W (1990) Perception of horizontal self-rotation: multisensory and cognitive aspects. In: Warren R, Wertheim AH (eds) Perception and control of self-motion. Lawrence Erlbaum, Hillsdale London, pp 219-63
    23. Mergner T, Schweigart G, Kolev O, Hlavacka F, Becker W (1995) Visual-vestibular interaction for human ego-motion perception. In: Mergner T, Hlavacka F (eds) Multisensory control of posture. Plenum Press, New York, pp 157-68 CrossRef
    24. Mergner T, Maurer C, Peterka RJ (2003) A multisensory posture control model of human upright stance. Prog Brain Res 142:189-01 CrossRef
    25. Mergner T, Schweigart G, Maurer C, Blümle A (2005) Human postural responses to motion of real and virtual visual environments under different support base conditions. Exp Brain Res 167:535-56 CrossRef
    26. Mergner T, Schweigart G, Fennel L (2009) Vestibular humanoid postural control. J Physiology Paris 103:178-94 CrossRef
    27. Nashner L, Berthoz A (1978) Visual contribution to rapid motor responses during postural control. Brain Res 150:403-07 CrossRef
    28. Paulus WM, Straube A, Brandt T (1984) Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. Brain 107:1143-163 CrossRef
    29. Peterka RJ (2002) Sensorimotor integration in human postural control. J Neurophysiol 88:1097-118
    30. Peterka RJ, Benolken MS (1995) Role of somatosensory and vestibular cues in attenuating visually induced human postural sway. Exp Brain Res 105:101-10 CrossRef
    31. Schor CM, Lakshminarayanan V, Narayan V (1984) Optokinetic and vection responses to apparent motion in man. Vis Res 24:1181-187 CrossRef
    32. Talbott RE (1980) Postural reactions of dogs to sinusoidal motion in the peripheral visual field. Am J Physiol 239:R71–R79
    33. van der Kooij H, van Asseldonk E, van der Helm FCT (2005) Comparison of different methods to identify and quantify balance control. J Neurosci Methods 145:175-03 CrossRef
    34. Wertheimer M (1912) Ueber das Sehen von Scheinbewegungen und Scheinkoerpern. Z Psychol 61:161-65 (English translation in: Wertheimer M (2012). On Perceived Motion and Figural Organization. Spillmann L (ed), MIT Press, Cambridge)
    35. Zacharias G, Young L (1981) Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Exp Brain Res 41:159-71 CrossRef
  • 作者单位:Lorenz Assl?nder (1) (2)
    Georg Hettich (1) (2)
    Albert Gollhofer (2)
    Thomas Mergner (1)

    1. Neurocenter, Neurological University Clinic, Breisacher Str. 64, 79106, Freiburg, Germany
    2. Institute for Sport and Sportscience, University of Freiburg, Schwarzwaldstr. 175, 79117, Freiburg, Germany
文摘
Vision helps humans in controlling bipedal stance, interacting mainly with vestibular and proprioceptive cues. This study investigates how postural compensation of support surface tilt is compromised by selectively reducing visual velocity cues by stroboscopic illumination of a stationary visual scene. Healthy adult subjects were presented with pseudorandom tilt sequences in the sagittal plane (tilt frequency range 0.017-.2?Hz; velocity amplitude spectrum constant up to a frequency of 0.6?Hz, angular displacement amplitude spectrum increasing with decreasing frequencies). Center of mass (COM) sway responses were recorded for stroboscopic illuminations at 48, 32, 16, 8, and 4?Hz, as well as under continuous illumination and with eyes closed. With strobe duration (5?ms) and mean luminance (1?lx) kept constant, visual acuity and perceived brightness remained constant and the visual scene was perceived as stationary. Yet, tilt-evoked COM excursions increased with decreasing strobe frequency in a graded way, with largest effects occurring at tilt frequencies where large tilt velocities coincided with small displacements. In addition, COM excursions were reduced at the lowest strobe frequency compared to eyes closed, with the largest effect occurring at tilt frequencies where tilt displacements were large. We conclude that two mechanisms exist, a velocity mechanism that deals with tilt compensation and is foremost affected by the stroboscopic illumination and a displacement mechanism. This compares favorably to previous findings that, transferred to a stance control model, suggest a velocity mechanism for tilt compensation and a position mechanism for gravity compensation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700