Femtosecond UV-laser pulses to unveil protein–protein interactions in living cells
详细信息    查看全文
  • 作者:Francesco Itri ; Daria M. Monti…
  • 关键词:Protein–protein interactions ; Ultra ; short UV ; laser pulses ; UV cross ; linking ; Living cells irradiation
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:73
  • 期:3
  • 页码:637-648
  • 全文大小:3,018 KB
  • 参考文献:1.Goodsell DS, Olson AJ (2000) Structural symmetry and protein function. Annu Rev Biophys Biomol Struct 29:105–153CrossRef PubMed
    2.Levy ED, Pereira-Leal JB, Chothia C, Teichmann SA (2006) 3D complex: a structural classification of protein complexes. PLoS Comput Biol 2:e155CrossRef PubMed PubMedCentral
    3.Tang X, Bruce JE (2009) Chemical cross-linking for protein-protein interaction studies. Methods Mol Biol 492:283–293CrossRef PubMed
    4.Subbotin RI, Chait BT (2014) A pipeline for determining protein-protein interactions and proximities in the cellular milieu. Mol Cell Proteomics 13:2824–2835CrossRef PubMed PubMedCentral
    5.Sinz A (2006) Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein-protein interactions. Mass Spectrom Rev 25:663–682CrossRef PubMed
    6.Bruce JE (2012) In vivo protein complex topologies: sights through a cross-linking lens. Proteomics 12:1565–1575CrossRef PubMed PubMedCentral
    7.Zhang H, Tang X, Munske GR, Tolic N, Anderson GA, Bruce JE (2009) Identification of protein-protein interactions and topologies in living cells with chemical cross-linking and mass spectrometry. Mol Cell Proteomics 8:409–420CrossRef PubMed PubMedCentral
    8.Walzthoeni T, Leitner A, Stengel F, Aebersold R (2013) Mass spectrometry supported determination of protein complex structure. Curr Opin Struct Biol 23:252–260CrossRef PubMed
    9.Guerrero C, Tagwerker C, Kaiser P, Huang L (2006) An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affinity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network. Mol Cell Proteomics MCP 5:366–378CrossRef PubMed
    10.Sinz A (2014) The advancement of chemical cross-linking and mass spectrometry for structural proteomics: from single proteins to protein interaction networks. Expert Rev Proteomics 11:733–743CrossRef PubMed
    11.Gingras A, Gstaiger M, Raught B, Aebersold R, Raught RAB (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8:645–654CrossRef PubMed
    12.Chavez JD, Weisbrod CR, Zheng C, Eng JK, Bruce JE (2013) Protein interactions, post-translational modifications and topologies in human cells. Mol Cell Proteomics 12:1451–1467CrossRef PubMed PubMedCentral
    13.Zheng C, Yang L, Hoopmann MR, Eng JK, Tang X, Weisbrod CR et al (2011) Cross-linking measurements of in vivo protein complex topologies. Mol Cell Proteomics 10(M110):006841PubMed
    14.Kaake RM, Wang X, Burke A, Yu C, Kandur W, Yang Y et al (2014) A new in vivo cross-linking mass spectrometry platform to define protein-protein interactions in living cells. Mol Cell Proteomics 13:3533–3543CrossRef PubMed PubMedCentral
    15.Lougheed KE, Bennett MH, Williams HD (2014) An in vivo crosslinking system for identifying mycobacterial protein-protein interactions. J Microbiol Methods 105:67–71CrossRef PubMed PubMedCentral
    16.Suchanek M, Radzikowska A, Thiele C (2005) Photo-leucine and photo-methionine allow identification of protein-protein interactions in living cells. Nat Methods 2:261–267CrossRef PubMed
    17.Lin S, He D, Long T, Zhang S, Meng R, Chen PR (2014) Genetically encoded cleavable protein photo-cross-linker. J Am Chem Soc 136:11860–11863CrossRef PubMed
    18.Leo G, Altucci C, Bourgoin-Voillard S, Gravagnuolo AM, Esposito R, Marino G et al (2013) Ultraviolet laser-induced cross-linking in peptides. Rapid Commun Mass Spectrom 27:1660–1668CrossRef PubMed
    19.Petrotchenko EV, Borchers CH (2010) Crosslinking combined with mass spectrometry for structural proteomics. Mass Spectrom Rev 29:862–876CrossRef PubMed
    20.Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108:1225–1244CrossRef PubMed
    21.Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci 93:13–20CrossRef PubMed PubMedCentral
    22.Mezei M (2015) Statistical properties of protein-protein interfaces. Algorithms 8:92–99CrossRef
    23.Falchi F, Caporuscio F, Recanatini M (2014) Structure-based design of small-molecule protein–protein interaction modulators: the story so far. Future Med Chem 6:343–357CrossRef PubMed
    24.Sirover MA (2014) Structural analysis of glyceraldehyde-3-phosphate dehydrogenase functional diversity. Int J Biochem Cell Biol 57:20–26CrossRef PubMed
    25.Henderson B, Martin AC (2014) Protein moonlighting: a new factor in biology and medicine. Biochem Soc Trans 42:1671–1678CrossRef PubMed
    26.Chuang DM, Ishitani R (1996) A role for GAPDH in apoptosis and neurodegeneration. Nat Med 2:609–610bCrossRef PubMed
    27.Jenkins JL, Tanner JJ (2006) High-resolution structure of human d -glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr 62:290–301CrossRef PubMed
    28.Boyd RW (2008) Nonlinear optics. Elsevier Academic Press, ISBN:0123694701
    29.Valadan M, D’Ambrosio D, Gesuele F, Velotta R, Altucci C (2015) Temporal and spectral characterization of femtosecond deep-UV chirped pulses. Laser Phys Lett 12: 025302. IOP Select http://​iopscience.​iop.​org/​1612-202X/​12/​2/​025302/​article
    30.Altucci C, Nebbioso A, Benedetti R, Esposito R, Carafa V, Conte M et al (2012) Nonlinear protein—nucleic acid crosslinking induced by femtosecond UV laser pulses in living cells. Laser Phys Lett 9:234–239CrossRef
    31.Plowman JE, Deb-Choudhury S, Grosvenor AJ, Dyer JM (2013) Protein oxidation: identification and utilisation of molecular markers to differentiate singlet oxygen and hydroxyl radical-mediated oxidative pathways. Photochem Photobiol Sci 12:1960–1967CrossRef PubMed
    32.Williams TJ, Reay AJ, Whitwood AC, Fairlamb IJ (2014) A mild and selectivePd-mediated methodology for the synthesis of highly fluorescent 2-arylated tryptophans and tryptophan-containing peptides: a catalytic role for Pd(0) nanoparticles? Chem Commun (Camb) 50:3052–3054CrossRef
    33.Pappenberger G, Schurig H, Jaenicke R (1997) Disruption of an ionic network leads to accelerated thermal denaturation of d -glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. J Mol Biol 274:676–683CrossRef PubMed
    34.He RQ, Li YG, Wu XQ, Li L (1995) Inactivation and conformation changes of the glycated and non-glycated d -glyceraldehyde-3-phosphate dehydrogenase during guanidine-HCl denaturation. Biochim Biophys Acta 1253:47–56CrossRef PubMed
    35.Pattison DI, Rahmanto AS, Davies MJ (2011) Photo-oxidation of proteins. Photochem Photobiol Sci 11:38–53CrossRef PubMed
    36.Fasman GD (1996) Circular dichroism and the conformational analysis of biomolecules. Springer Science & Business Media, New YorkCrossRef
    37.Nakajima H, Amano W, Fukuhara A, Kubo T, Misaki S, Azuma YT et al (2009) An aggregate-prone mutant of human glyceraldehyde-3-phosphate dehydrogenase augments oxidative stress-induced cell death in SH-SY5Y cells. Biochem Biophys Res Commun 390:1066–1071CrossRef PubMed
    38.Nakajima H, Amano W, Kubo T, Fukuhara A, Ihara H, Azuma YT et al (2009) Glyceraldehyde-3-phosphate dehydrogenase aggregate formation participates in oxidative stress-induced cell death. J Biol Chem 284:34331–34341CrossRef PubMed PubMedCentral
    39.Kryukov P, Letokhov V, Nikogosyan D, Borodavkin A, Budowsky E, Simukova N (1979) Multiquantum photoreactions of nucleic acid components in aqueous solution by powerful ultraviolet picosecond radiation. Chem Phys Lett 61:375–379CrossRef
    40.Nikogosyan DN (1990) Two-quantum UV photochemistry of nucleic acids: comparison with conventional low-intensity UV photochemistry and radiation chemistry. Int J Radiat Biol 57:233–299CrossRef PubMed
    41.Klockenbusch C, Kast J (2010) Optimization of formaldehyde cross-linking for protein interaction analysis of non-tagged integrin B1. J Biomed Biotechnol 2010:927585CrossRef PubMed PubMedCentral
    42.Gu L, Li C, Aach J, Hill DE, Vidal M, Church GM (2014) Multiplex single-molecule interaction profiling of DNA-barcoded proteins. Nature 515:554–557CrossRef PubMed PubMedCentral
  • 作者单位:Francesco Itri (1)
    Daria M. Monti (1) (2)
    Bartolomeo Della Ventura (3)
    Roberto Vinciguerra (1)
    Marco Chino (1)
    Felice Gesuele (3)
    Angelina Lombardi (1)
    Raffaele Velotta (3) (4)
    Carlo Altucci (3) (4)
    Leila Birolo (1)
    Renata Piccoli (1) (2)
    Angela Arciello (1) (2)

    1. Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
    2. Istituto Nazionale di Biostrutture e Biosistemi (INBB), Rome, Italy
    3. Department of Physics, University of Naples Federico II, 80126, Naples, Italy
    4. Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), UdR, Naples, Italy
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
A hallmark to decipher bioprocesses is to characterize protein–protein interactions in living cells. To do this, the development of innovative methodologies, which do not alter proteins and their natural environment, is particularly needed. Here, we report a method (LUCK, Laser UV Cross-linKing) to in vivo cross-link proteins by UV-laser irradiation of living cells. Upon irradiation of HeLa cells under controlled conditions, cross-linked products of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were detected, whose yield was found to be a linear function of the total irradiation energy. We demonstrated that stable dimers of GAPDH were formed through intersubunit cross-linking, as also observed when the pure protein was irradiated by UV-laser in vitro. We proposed a defined patch of aromatic residues located at the enzyme subunit interface as the cross-linking sites involved in dimer formation. Hence, by this technique, UV-laser is able to photofix protein surfaces that come in direct contact. Due to the ultra-short time scale of UV-laser-induced cross-linking, this technique could be extended to weld even transient protein interactions in their native context. Keywords Protein–protein interactions Ultra-short UV-laser pulses UV cross-linking Living cells irradiation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700