Non-invasive Assessments of Adipose Tissue Metabolism In Vitro
详细信息    查看全文
  • 作者:Rosalyn D. Abbott ; Francis E. Borowsky ; Kyle P. Quinn…
  • 关键词:Tissue engineering ; Non ; destructive characterization ; Optical imaging
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:44
  • 期:3
  • 页码:725-732
  • 全文大小:1,031 KB
  • 参考文献:1.Abbott, R. D., and D. L. Kaplan. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol. 33:401–407, 2015.CrossRef PubMed
    2.Abbott, R. D., W. K. Raja, R. Y. Wang, J. A. Stinson, D. L. Glettig, K. A. Burke, and D. L. Kaplan. Long term perfusion system supporting adipogenesis. Methods 84:84–89, 2015.CrossRef PubMed
    3.Ahmed, N., N. M. Ahmad, H. Fessi, and A. Elaissari. In vitro MRI of biodegradable hybrid (iron oxide/polycaprolactone) magnetic nanoparticles prepared via modified double emulsion evaporation mechanism. Colloids Surf. B 130:264–271, 2015.CrossRef
    4.Andrade-Oliveira, V., N. O. Camara, and P. M. Moraes-Vieira. Adipokines as drug targets in diabetes and underlying disturbances. J. Diabetes Res. 2015:681612, 2015.CrossRef PubMed PubMedCentral
    5.Arner, P. Techniques for the measurement of white adipose tissue metabolism: a practical guide. Int. J. obes. Relat. metab. Disord. 19:435–442, 1995.PubMed
    6.Baboota, R. K., D. P. Singh, S. M. Sarma, J. Kaur, R. Sandhir, R. K. Boparai, K. K. Kondepudi, and M. Bishnoi. Capsaicin induces “brite” phenotype in differentiating 3T3-L1 preadipocytes. PLoS ONE 9:e103093, 2014.CrossRef PubMed PubMedCentral
    7.Bauer, D., E. Mazzio, K. F. Soliman, E. Taka, E. Oriaku, T. Womble, and S. Darling-Reed. Diallyl disulfide inhibits TNFalpha-induced CCL2 release by MDA-MB-231 cells. Anticancer Res. 34:2763–2770, 2014.PubMed PubMedCentral
    8.Bellas, E., K. G. Marra, and D. L. Kaplan. Sustainable three-dimensional tissue model of human adipose tissue. Tissue Eng. Part C 19:745–754, 2013.CrossRef
    9.Bhanu Prakash, K. N., V. Gopalan, and S. S. Lee. Quantification of abdominal fat depots in rats and mice during obesity and weight loss interventions. PLoS ONE 9:e108979, 2014.CrossRef
    10.Bjorndal, B., L. Burri, V. Staalesen, J. Skorve, and R. K. Berge. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J. Obesity 2011:490650, 2011.CrossRef
    11.Bjorntorp, P., and L. Sjostrom. Carbohydrate storage in man: speculations and some quantitative considerations. Metabolism 27:1853–1865, 1978.CrossRef PubMed
    12.Chang, T., M. S. Zimmerley, K. P. Quinn, I. Lamarre-Jouenne, D. L. Kaplan, E. Beaurepaire, and I. Georgakoudi. Non-invasive monitoring of cell metabolism and lipid production in 3D engineered human adipose tissues using label-free multiphoton microscopy. Biomaterials 34:8607–8616, 2013.CrossRef PubMed
    13.Choi, J. H., J. M. Gimble, K. Lee, K. G. Marra, J. P. Rubin, J. J. Yoo, G. Vunjak-Novakovic, and D. L. Kaplan. Adipose tissue engineering for soft tissue regeneration. Tissue Eng. Part B 16:413–426, 2010.CrossRef
    14.Chung, E., S. Y. Nam, L. M. Ricles, S. Y. Emelianov, and L. J. Suggs. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications. Int. J. Nanomed. 8:325–336, 2013.CrossRef
    15.Cinti, S. The role of brown adipose tissue in human obesity. Nutr. Metab. Cardiovasc. Dis. 16:569–574, 2006.CrossRef PubMed
    16.Coppack, S. W., K. N. Frayn, S. M. Humphreys, P. L. Whyte, and T. D. Hockaday. Arteriovenous differences across human adipose and forearm tissues after overnight fast. Metabolism 39:384–390, 1990.CrossRef PubMed
    17.Danmark, S., M. Gladnikoff, T. Frisk, M. Zelenina, K. Mustafa, A. Russom, and A. Finne-Wistrand. Development of a novel microfluidic device for long-term in situ monitoring of live cells in 3-dimensional matrices. Biomed. Microdev. 14:885–893, 2012.CrossRef
    18.Datta, R., A. Alfonso-Garcia, R. Cinco, and E. Gratton. Fluorescence lifetime imaging of endogenous biomarker of oxidative stress. Scientific Rep. 5:9848, 2015.CrossRef
    19.Debarre, D., W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 3:47–53, 2006.CrossRef PubMed
    20.Evans, C. L., and X. S. Xie. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Ann. Rev. Anal. Chem. 1:883–909, 2008.CrossRef
    21.Ferrick, D. A., A. Neilson, and C. Beeson. Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov. Today 13:268–274, 2008.CrossRef PubMed
    22.Georgakoudi, I., and K. P. Quinn. Optical imaging using endogenous contrast to assess metabolic state. Ann. Rev. Biomed. Eng. 14:351–367, 2012.CrossRef
    23.Georgakoudi, I., W. L. Rice, M. Hronik-Tupaj, and D. L. Kaplan. Optical spectroscopy and imaging for the noninvasive evaluation of engineered tissues. Tissue Eng. Part B 14:321–340, 2008.CrossRef
    24.Georgakoudi, I., I. Tsai, C. Greiner, C. Wong, J. Defelice, and D. Kaplan. Intrinsic fluorescence changes associated with the conformational state of silk fibroin in biomaterial matrices. Optics Express 15:1043–1053, 2007.CrossRef PubMed
    25.Gerlach, J. C., Y. C. Lin, C. A. Brayfield, D. M. Minteer, H. Li, J. P. Rubin, and K. G. Marra. Adipogenesis of human adipose-derived stem cells within three-dimensional hollow fiber-based bioreactors. Tissue Eng. Part C 18:54–61, 2012.CrossRef
    26.Gesta, S., and C. R. Kahn. Adipose tissue biology. Berlin: Springer, 2011.
    27.Guo, Y., K. R. Cordes, R. V. Farese, and T. C. Walther. Lipid droplets at a glance. J. Cell Sci. 122:749–752, 2009.CrossRef PubMed PubMedCentral
    28.Himms-Hagen, J. Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J. 4:2890–2898, 1990.PubMed
    29.Iyengar, N. M., C. A. Hudis, A. J. Dannenberg. Obesity and inflammation: new insights into breast cancer development and progression. In: American Society of Clinical Oncology educational book/ASCO. American Society of Clinical Oncology. Meeting, 2013, pp. 46–51.
    30.Kawasaki, N., R. Asada, A. Saito, S. Kanemoto, and K. Imaizumi. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Scientific Rep. 2:799, 2012.
    31.Kim, Y. J., S. H. Lee, T. Y. Kim, J. Y. Park, S. H. Choi, and K. G. Kim. Body fat assessment method using CT images with separation mask algorithm. J. Dig. Imaging 26:155–162, 2013.CrossRef
    32.Kim, T. K., and K. S. Park. Inhibitory effects of harpagoside on TNF-alpha-induced pro-inflammatory adipokine expression through PPAR-gamma activation in 3T3-L1 adipocytes. Cytokine 14:24–26, 2015.
    33.Lafontan, M. Advances in adipose tissue metabolism. Int. J. Obes. 32(Suppl 7):S39–51, 2008.CrossRef
    34.Li, M., S. Yang, and P. Bjorntorp. Metabolism of different adipose tissues in vivo in the rat. Obes. Res. 1:459–468, 1993.CrossRef PubMed
    35.Marcus, R. L., O. Addison, J. P. Kidde, L. E. Dibble, and P. C. Lastayo. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J. Nutr. Health Aging 14:362–366, 2010.CrossRef PubMed PubMedCentral
    36.Marin, P., M. Rebuffe-Scrive, U. Smith, and P. Bjorntorp. Glucose uptake in human adipose tissue. Metabolism 36:1154–1160, 1987.CrossRef PubMed
    37.Maury, E., and S. M. Brichard. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cellular Endocrinol. 314:1–16, 2010.CrossRef
    38.Min, W., C. W. Freudiger, S. Lu, and X. S. Xie. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Ann. Rev. Phys. Chem. 62:507–530, 2011.CrossRef
    39.Minteer, D. M., J. C. Gerlach, and K. G. Marra. Bioreactors addressing diabetes mellitus. J. Diabetes Sci. Technol. 8:1227–1232, 2014.CrossRef PubMed PubMedCentral
    40.Minteer, D. M., M. T. Young, Y. C. Lin, P. J. Over, J. P. Rubin, J. C. Gerlach, and K. G. Marra. Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications. J. Tissue Eng. 6:2041731415579215, 2015.CrossRef PubMed PubMedCentral
    41.Mittendorfer, B. Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking. Current opinion in clinical nutrition and metabolic care 14:535–541, 2011.CrossRef PubMed PubMedCentral
    42.Nam, S. Y., E. Chung, L. J. Suggs, and S. Y. Emelianov. Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct. Tissue Eng. Part C 21:557–566, 2015.CrossRef
    43.Nan, X., J. X. Cheng, and X. S. Xie. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res. 44:2202–2208, 2003.CrossRef PubMed
    44.Palero, J. A., H. S. de Bruijn, A. van deR Ploeg, A. van de Heuvel, H. J. Sterenborg, and H. C. Gerritsen. Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues. Biophys. J. 93:992–1007, 2007.CrossRef PubMed PubMedCentral
    45.Pezacki, J. P., J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 7:137–145, 2011.CrossRef PubMed
    46.Popov, K. I., A. F. Pegoraro, A. Stolow, and L. Ramunno. Image formation in CARS and SRS: effect of an inhomogeneous nonresonant background medium. Optics Lett. 37:473–475, 2012.CrossRef
    47.Quinn, K. P., E. Bellas, N. Fourligas, K. Lee, D. L. Kaplan, and I. Georgakoudi. Characterization of metabolic changes associated with the functional development of 3D engineered tissues by non-invasive, dynamic measurement of individual cell redox ratios. Biomaterials 33:5341–5348, 2012.CrossRef PubMed PubMedCentral
    48.Quinn, K. P., G. V. Sridharan, R. S. Hayden, D. L. Kaplan, K. Lee, and I. Georgiakoudi. Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Scientific Rep. 3:3432, 2013.
    49.Salabei, J. K., A. A. Gibb, and B. G. Hill. Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat. Protoc. 9:421–438, 2014.CrossRef PubMed PubMedCentral
    50.Santini, F., P. Marzullo, M. Rotondi, G. Ceccarini, L. Pagano, S. Ippolito, L. Chiovato, and B. Biondi. Mechanisms in endocrinology: the crosstalk between thyroid gland and adipose tissue: signal integration in health and disease. Eur. J. Endocrinol. 171:R137–152, 2014.CrossRef PubMed
    51.Sikder, S., J. M. Reyes, C. S. Moon, O. Suwan-apichon, J. H. Elisseeff, and R. S. Chuck. Noninvasive mitochondrial imaging in live cell culture. Photochem. Photobiol. 81:1569–1571, 2005.CrossRef PubMed
    52.Sjostrom, L. Fatty acid synthesis de novo in adipose tissue from obese subjects on a hypercaloric high-carbohydrate diet. Scand. J. Clin. Lab. investig. 32:339–349, 1973.CrossRef
    53.Slipchenko, M. N., T. T. Le, H. Chen, and J. X. Cheng. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy. J. Phys. Chem. B 113:7681–7686, 2009.CrossRef PubMed PubMedCentral
    54.Squier, J., M. Muller, G. Brakenhoff, and K. R. Wilson. Third harmonic generation microscopy. Optics Express 3:315–324, 1998.CrossRef PubMed
    55.Stanford, K. I., R. J. Middelbeek, K. L. Townsend, D. An, E. B. Nygaard, K. M. Hitchcox, K. R. Markan, K. Nakano, M. F. Hirshman, Y. H. Tseng, and L. J. Goodyear. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Investig. 123:215–223, 2013.CrossRef PubMed PubMedCentral
    56.Than, A., H. L. He, S. H. Chua, D. Xu, L. Sun, M. K. Leow, and P. Chen. Apelin enhances brown adipogenesis and browning of white adipocytes. J. Biol. Chem. 290:14679–14691, 2015.CrossRef PubMed
    57.Trayhurn, P., and J. H. Beattie. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 60:329–339, 2001.CrossRef PubMed
    58.Trayhurn, P., and I. S. Wood. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br. J. Nut. 92:347–355, 2004.CrossRef
    59.Vaughan, M., and D. Steinberg. Effect of hormones on lipolysis and esterification of free fatty acids during incubation of adipose tissue in vitro. J. Lipid Res. 4:193–199, 1963.PubMed
    60.Vermette, M., V. Trottier, V. Menard, L. Saint-Pierre, A. Roy, and J. Fradette. Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells. Biomaterials 28:2850–2860, 2007.CrossRef PubMed
    61.Ward, A., K. P. Quinn, E. Bellas, I. Georgakoudi, and D. L. Kaplan. Noninvasive metabolic imaging of engineered 3D human adipose tissue in a perfusion bioreactor. PLoS ONE 8:e55696, 2013.CrossRef PubMed PubMedCentral
    62.Xue, R., M. D. Lynes, J. M. Dreyfuss, F. Shamsi, T. J. Schulz, H. Zhang, T. L. Huang, K. L. Townsend, Y. Li, H. Takahashi, L. S. Weiner, A. P. White, M. S. Lynes, L. L. Rubin, L. J. Goodyear, A. M. Cypess, and Y. H. Tseng. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat. Med. 21:760–768, 2015.CrossRef PubMed PubMedCentral
    63.Zipfel, W. R., R. M. Williams, and W. W. Webb. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21:1369–1377, 2003.CrossRef PubMed
  • 作者单位:Rosalyn D. Abbott (1)
    Francis E. Borowsky (1)
    Kyle P. Quinn (1)
    David L. Bernstein (1)
    Irene Georgakoudi (1)
    David L. Kaplan (1)

    1. Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biomedical Engineering
    Biophysics and Biomedical Physics
    Mechanics
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-9686
文摘
Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700