Prothymosin alpha protects cardiomyocytes against ischemia-induced apoptosis via preservation of Akt activation
详细信息    查看全文
  • 作者:Alessandro Cannavo ; Giuseppe Rengo ; Daniela Liccardo ; Gianluigi Pironti…
  • 关键词:Prothymosin alpha ; Apoptosis ; Ischemia ; Cardioprotection
  • 刊名:Apoptosis
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:18
  • 期:10
  • 页码:1252-1261
  • 全文大小:607KB
  • 参考文献:1. Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95:957-70 CrossRef
    2. Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease—a novel therapeutic target? Faseb J 16:135-46 CrossRef
    3. Logue SE, Gustafsson AB, Samali A, Gottlieb RA (2005) Ischemia/reperfusion injury at the intersection with cell death. J Mol Cell Cardiol 38:21-3 CrossRef
    4. Regula KM, Kirshenbaum LA (2005) Apoptosis of ventricular myocytes: a means to an end. J Mol Cell Cardiol 38:3-3 CrossRef
    5. Whelan RS, Mani K, Kitsis RN (2007) Nipping at cardiac remodeling. J Clin Investig 117:2751-753 CrossRef
    6. Lymperopoulos A, Rengo G, Koch WJ (2007) Adrenal adrenoceptors in heart failure: fine-tuning cardiac stimulation. Trends Mol Med 13:503-11 CrossRef
    7. Kitsis RN, Narula J (2008) Introduction cell death in heart failure. Heart Fail Rev 13:107-09 CrossRef
    8. Mani K, Kitsis RN (2003) Myocyte apoptosis: programming ventricular remodelling. J Am Coll Cardiol 41:761-64 CrossRef
    9. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981-988 CrossRef
    10. Rengo G, Perrone Filardi P, Femminella GD, Liccardo D, Zincarelli C, de Lucia C, Pagano G, Marsico F, Lymperopoulos A, Leosco D (2012) Targeting β-adrenergic receptor system via G-protein coupled receptor kinase 2 (GRK2): a new paradigm for therapy and prognostic evaluation in heart failure. FROM BENCH TO BEDSIDE. Circ Heart Fail 5:385-91 CrossRef
    11. Rengo G, Lymperopoulos A, Leosco D, Koch WJ (2011) GRK2 as a novel gene therapy target in heart failure. J Mol Cell Cardiol 50:785-92 CrossRef
    12. Evsta¢eva GA, Belov GA, Kalkum M, Chichkova NV, Bogdanov AA, Agol VI, Vartapetian AB (2000) Prothymosin K fragmentation in apoptosis. FEBS Lett 467:150-54 CrossRef
    13. Ueda H, Fujita R, Yoshida A, Matsunaga H, Ueda M (2007) Identification of prothymosin-alpha 1, the necrosis–apoptosis switch molecule in cortical neuronal cultures. J Cell Biol 176(6):853-62 CrossRef
    14. Letsas KP, Frangou-Lazaridis M (2006) Surfing on prothymosin alpha proliferation and anti-apoptotic properties. Neoplasma 53(2):92-6
    15. Barbini L, Gonzalez R, Dominguez F, Vega F (2006) Apoptotic and proliferating hepatocytes differ in prothymosin alpha expression and cell localization. Mol Cell Biochem 291(1-):83-1 CrossRef
    16. Hannappel E, Huff T (2003) The thymosins, prothymosin alpha, parathymosin, and alpha-thymosins: structure and function. Vitam Horm 66:257-95 CrossRef
    17. Mosoian A, Teixeira A, Burns CS, Sander LE, Gusella GL, He C, Blander JM, Klotman P, Klotman ME (2010) Prothymosin-alpha inhibits HIV-1 via Toll-like receptor 4-mediated type I interferon induction. Proc Natl Acad Sci USA 107(22):10178-0183 CrossRef
    18. Salgado FJ, Pi?eiro A, Canda-Sánchez A, Lojo J, Nogueira M (2005) Prothymosin alpha-receptor associates with lipid rafts in PHA-stimulated lymphocytes. Mol Membr Biol 22(3):163-76 CrossRef
    19. Franco FJ, Diaz C, Barcia M, Arias P, Gomez-Marquez J, Soriano F, Mendez E, Freire M (1989) Synthesis and apparent secretion of prothymosin alpha by different subpopulations of calf and rat thymocytes. Immunology 67(2):263-68
    20. Panneerselvam C, Haritos AA, Caldarella J, Horecker BL (1987) Prothymosin alpha in human blood. Proc Natl Acad Sci USA 84:4465-469 CrossRef
    21. Lymperopoulos A, Rengo G, Gao E, Ebert SN, Dorn GW 2nd, Koch WJ (2010) Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem 285:16378-6386 CrossRef
    22. Rengo G, Zincarelli C, Femminella GD, Liccardo D, Pagano G, de Lucia C, Altobelli GG, Cimini V, Ruggiero D, Perrone-Filardi P, Gao E, Ferrara N, Lymperopoulos A, Koch WJ, Leosco D (2012) Myocardial β2-adrenergic receptor gene delivery promotes coordinated cardiac adaptive remodeling and angiogenesis in heart failure. Br J Pharmacol 166:2348-361 CrossRef
    23. Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM (2002) beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 277:9429-436 CrossRef
    24. Ciccarelli M, Chuprun JK, Rengo G, Gao E, Wei Z, Peroutka RJ, Gold J, Gumpert A, Chen M, otis NJ, Dorn GW II, Trimarco B, Iaccarino G, Koch WJ (2011) GRK2 activity impairs cardiac glucose uptake and promotes insulin resistance following myocardial ischemia. Circulation 123:1953-962 CrossRef
    25. Esposito G, Perrino C, Cannavo A, Schiattarella GG, Borgia F, Sannino A, Pironti G, Gargiulo G, Di Serafino L, Franzone A, Scudiero L, Grieco P, Indolfi C, Chiariello M (2011) EGFR trans-activation by urotensin II receptor is mediated by β-arrestin recruitment and confers cardioprotection in pressure overload-induced cardiac hypertrophy. Basic Res Cardiol 106:577-89 CrossRef
    26. Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Soltys S, Koch WJ (2009) An adrenal β-arrestin 1-mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo. Proc Natl Acad Sci USA 106:5825-830 CrossRef
    27. Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19:6341-350 CrossRef
    28. Rengo G, Lymperopoulos A, Zincarelli C, Donniacuo M, Soltys S, Rabinowitz JE, Koch WJ (2009) Myocardial AAV6-βARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation 119:89-8 CrossRef
    29. Lymperopoulos A, Rengo G, Zincarelli C, Kim J, Koch WJ (2011) Adrenal β-arrestin-1 inhibition in vivo attenuates post-myocardial infarction progression to heart failure and adverse remodeling via reduction of circulating aldosterone levels. J Am Coll Cardiol 57:356-65 CrossRef
    30. Cook CA, Matsui C, Li L, Rosenzweig A (2002) Transcriptional effects of chronic Akt activation in the heart. J Biol Chem 277:22528-2533 CrossRef
    31. Saraste A (1999) Morphologic criteria and detection of apoptosis. Herz 24(3):189-95 CrossRef
    32. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495-16 CrossRef
    33. Guaiquil VH, Golde DW, Beckles DL, Mascareno EJ, Siddiqui MA (2004) Vitamin C inhibits hypoxia-induced damage and apoptotic signaling pathways in cardiomyocytes and ischemic hearts. Free Radic Biol Med 37(9):1419-429 CrossRef
    34. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101:660-67 CrossRef
    35. Matsui T, Nagoshi T, Rosenzweig A (2003) Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2(3):220-23 CrossRef
    36. Leosco D, Rengo G, Iaccarino G, Golino L, Marchese M, Fortunato F, Zincarelli C, Sansari E, Ciccarelli M, Galasso G, Altobelli GG, Conti V, Matrone G, Cimini V, Ferrara N, Filippelli A, Koch WJ, Rengo F (2008) Exercise promotes angiogenesis and improves β-adrenergic receptor signaling in the post-ischemic failing rat heart. Cardiovasc Res 78:385-94 CrossRef
    37. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Investig 74:86-07
  • 作者单位:Alessandro Cannavo (1) (2) (3)
    Giuseppe Rengo (3) (4)
    Daniela Liccardo (3)
    Gianluigi Pironti (1) (5)
    Maria Cecilia Scimia (2)
    Laura Scudiero (1)
    Claudio De Lucia (3)
    Marco Ferrone (1)
    Dario Leosco (3)
    Nicola Zambrano (6) (7)
    Walter J. Koch (2)
    Bruno Trimarco (1)
    Giovanni Esposito (1)

    1. Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
    2. Center for Translational Medicine, Temple University, Philadelphia, PA, USA
    3. Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
    4. Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme, Telese Terme, BN, Italy
    5. Duke University, Durham, NC, USA
    6. Department of Biochemistry and Medical Biotechnology, Federico II University of Naples, Naples, Italy
    7. CEINGE Advanced Biotechnology, Naples, Italy
  • ISSN:1573-675X
文摘
The human prothymosin alpha (PTα) gene encodes a 12.5?kDa highly acidic nuclear protein that is widely expressed in mammalian tissues including the heart and importantly, is detectable also in blood serum. During apoptosis or necrosis, PTα changes its nuclear localization and is able to exert an important cytoprotective effect. Since the role of PTα in the heart has never been evaluated, the aim of the present study was to investigate the effects of PTα on cardiomyocytes during ischemic injury. Our data show that seven after myocardial infarction (MI), PTα expression levels are significantly increased both in blood serum and in cardiac tissue, and notably we observe that PTα translocates from the nuclei to cytoplasm and plasma membrane of cardiomyocytes following MI. Furthermore, in vitro experiments in cardiomyocytes, confirm that after 6?h of simulated ischemia (SI), PTα protein levels are upregulated compared to normoxic cells. Importantly, treatment of cardiomyocytes with a recombinant PTα (rPTα), during SI results in a significant decrease in the apoptotic response and in a robust increase in cell survival. Moreover, these effects are accompanied to a significant preservation of the activated levels of the anti-apoptotic serine-threonine kinase Akt. Consistent with our in vitro observation, rPTα-treated MI mice exhibit a strong reduction in infarct size at 24?h, compared to the MI control group and at the molecular level, PTα treatment induces activation of Akt. The present study provides for the first time the demonstration that PTα offers cardioprotection against ischemic injury by an Akt-dependent mechanism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700