Effects of histidine protonation and rotameric states on virtual screening of M. tuberculosis RmlC
详细信息    查看全文
  • 作者:Meekyum Olivia Kim (1)
    Sara E. Nichols (1) (2) (3)
    Yi Wang (4) (5)
    J. Andrew McCammon (1) (2) (3) (4)
  • 关键词:Docking ; Drug design ; Histidine ; Protonation state ; Rotameric state ; Virtual screening
  • 刊名:Journal of Computer-Aided Molecular Design
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:27
  • 期:3
  • 页码:235-246
  • 全文大小:714KB
  • 参考文献:1. Ten Brink T, Exner TE (2009) Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results. J Chem Inf Model 49:1535-546 CrossRef
    2. Knox AJS, Meegan MJ, Carta G, Lloyd DG (2005) Considerations in compound database preparation—”hidden-impact on virtual screening results. J Chem Inf Model 45:1908-919 CrossRef
    3. Martin YC (2009) Let’s not forget tautomers. J Comput Aided Mol Des 23:693-04 CrossRef
    4. Kalliokoski T, Salo HS, Lahtela-Kakkonen M, Poso A (2009) The effect of ligand-based tautomer and protomer prediction on structure-based virtual screening. J Chem Inf Model 49:2742-748 CrossRef
    5. Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61:704-21 CrossRef
    6. Bas DC, Rogers DM, Jensen JH (2008) Very fast prediction and rationalization of pKa values for protein-ligand complexes. Proteins 73:765-83 CrossRef
    7. Olsson MHM, S?ndergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7:525-37 CrossRef
    8. S?ndergaard CR, Olsson MHM, Rostkowski M, Jensen JH (2011) Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theory Comput 7:2284-295 CrossRef
    9. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33:368-71 CrossRef
    10. Myers JB, Grothaus G, Narayana S, Onufriev A (2006) A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules. Proteins 63:928-38 CrossRef
    11. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling simulation. Nucleic Acids Res 40:537-41 CrossRef
    12. Alexov E, Gunner MR (1997) Incorporating protein conformational flexibility into pH-titration calculations: results on T4 lysozyme. Biophys J 74:2075-093 CrossRef
    13. Georgescu RE, Alexov E, Gunner MR (2002) Combining conformational flexibility and continuum electrostatics for calculating pKa’s in proteins. Biophys J 83:1731-748 CrossRef
    14. Song Y, Gunner MR (2009) MCCE2: improving protein pKa calculations with extensive side chain rotamer sampling. J Comput Chem 30:2231-247
    15. Park MS, Gao C, Stern HA (2011) Estimating binding affinities by docking/scoring methods using variable protonation states. Proteins 79:304-14 CrossRef
    16. Sivendran S, Jones V, Sun D, Wang Y, Grzegorzewicz AE, Scherman MS, Napper AD, McCammon JA, Lee RE, Diamond SL, McNeil M (2010) Identification of triazinoindol-benzimidazolones as nanomolar inhibitors of / Mycobacterium tuberculosis enzyme TDP-6-deoxy-d -xylo-4-hexopyronosid-4-ulose 3,5-epimerase (RmlC). Bioorg Med Chem 18:896-08 CrossRef
    17. Cleland WW (2000) Low-barrier hydrogen bonds and enzymatic catalysis. Arch Biochem Biophys 382:1- CrossRef
    18. Tu C, Silverman DN, Forsman C, Jonsson BH, Blindskog S (1989) Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studied with a site-specific mutant. Biochemistry 28:7913-918 CrossRef
    19. Ren X, Tu C, Laipis PJ, Silverman DN (1995) Proton transfer by histidine 67 in site-directed mutants of human carbonic anhydrase III. Biochemistry 34:8492-498 CrossRef
    20. Eigen M (1964) Proton transfer, acid-base catalysis, and enzymatic hydrolysis. Part I: elementary processes. Angew Chem Int Ed Engl 3:1-9 CrossRef
    21. Stockel J, Safar J, Wallace AC, Cohen FE, Prusiner SB (1998) Prion protein selectively binds copper (II) ions. Biochemistry 37:7185-193 CrossRef
    22. Olson JS, Mathews AJ, Rohlfs RJ, Springer BA, Egeberg KD, Sligar SG, Tame J, Renuad JP, Nagai K (1998) The role of distal histidine in myoglobin and haemoglobin. Nature 336:265-66 CrossRef
    23. Li S, Hong M (2011) Protonation, tautomerization, and rotameric structure of histidine: a comprehensive study by magic-angle-spinning solid-state NMR. J Am Chem Soc 133:1534-544 CrossRef
    24. Gluster J, Lewis M, Rossi M (1994) Crystal structure analysis for chemists and biologists. VCH Publishers, New York
    25. Li X, Jacobson MP, Zhu K, Zhao S, Friesner RA (2006) Assignment of polar states for protein amino acid residues using an interaction cluster decomposition algorithm and its application to high resolution protein structure modeling. Proteins 66:824-37 CrossRef
    26. Ma Y, Stern RJ, Scherman MS, Vissa VD, Yan W, Jones VC, Zhang F, Franzblau SG, Lewis WH, McNeil MR (2001) Drug targeting / Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. Antimicrob Agents Chemother 45:1407-416 CrossRef
    27. Dong C, Major LL, Srikannathasan V, Errey JC, Giraud M, Lam JS, Graninger M, Messner P, McNeil MR, Field RA, Whitfield C, Naismith JH (2007) RmlC, a C3-and C5-carbohydrate epimerase, appears to operate via an intermediate with an unusual twist boat conformation. J Mol Biol 365:146-59 CrossRef
    28. Schr?dinger Suite 2011 Protein Preparation Wizard; Epik version 2.2; Impact version 5.7; Prime version 3.0 (2011). Schr?dinger, LLC, New York, NY
    29. Glide (2011) Version 5.7 edn. Schr?dinger, LLC, New York, NY
    30. LigPrep (2011) Version 2.5 edn. Schr?dinger, LLC, New York, NY
    31. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchiyama M (2007) Epik: a software program for pKa prediction and protonation state generation for druglike molecules. J Comput Aided Mol Des 21:681-91 CrossRef
    32. Epik (2011) Version 2.2 edn. Schr?dinger, LLC, New York, NY
    33. Canvas (2012) Version 1.5 edn. Schr?dinger, LLC, New York, NY
    34. Duan J, Dixon SL, Lowrie JF, Sherman W (2010) Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods. J Mol Graph Model 29:157-70 CrossRef
    35. Sastry M, Lowrie JF, Dixon SL, Sherman W (2010) Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J Chem Inf Model 50:771-84 CrossRef
    36. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M, Perry JK, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739-749 CrossRef
    37. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750-759 CrossRef
    38. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177-196 CrossRef
    39. Bender A, Glen RC (2005) A discussion of measures of enrichment in virtual screening: comparing the information content of descriptors with increasing levels of sophistication. J Chem Inf Model 45:1369-375 CrossRef
    40. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861-74 CrossRef
    41. Craig IR, Essex JW, Spiegel K (2010) Ensemble docking into multiple crystallographically derived protein structures: an evaluation based on the statistical analysis of enrichment. J Chem Inf Model 50:511-24 CrossRef
    42. Nicholls A (2008) How do we know and when do we know it? J Comput Aided Mol Des 22:239-55 CrossRef
    43. MATLAB (2011) Version 7.12.0.635 edn. The MathWorks, Inc., Natick, MA
    44. Maestro (2011) Version 9.2 edn. Schr?dinger, LLC, New York, NY
    45. Perrin DD, Dempsey B, Sergeant EP (1981) pKa prediction for organic acids and bases. Chapman and Hall, London
    46. Pan Y, Huang N, Cho S, MacKerell AD (2003) Consideration of molecular weight during compound selection in virtual target-based database screening. J Chem Inf Comput Sci 43:267-72 CrossRef
    47. Carlson HA, McCammon JA (2000) Accommodating protein flexibility in computational drug design. Mol Pharmacol 57:213-18
    48. Carlson HA (2002) Protein flexibility and drug design: how to hit a moving target. Curr Opin Chem Biol 6:447-52 CrossRef
    49. Sinko W, Lindert S, McCammon JA (2013) Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem Biol Drug Des 81:41-9 CrossRef
    50. Baptista AM, Teixeira VH, Soares CM (2002) Constant-pH molecular dynamics using stochastic titration. J Chem Phys 117:4184-200 CrossRef
    51. Mongan J, Case DA, McCammon JA (2004) Constant pH molecular dynamics in generalized Born implicit solvent. J Comput Chem 25:2038-048 CrossRef
    52. Williams SL, Blachly PG, McCammon JA (2011) Measuring the successes and deficiencies of constant pH molecular dynamics: a blind prediction test. Proteins 79:2281-288 CrossRef
    53. Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des 22:693-05 CrossRef
  • 作者单位:Meekyum Olivia Kim (1)
    Sara E. Nichols (1) (2) (3)
    Yi Wang (4) (5)
    J. Andrew McCammon (1) (2) (3) (4)

    1. Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
    2. Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
    3. Center for Theoretical Biological Physics, University of California San Diego, La Jolla, CA, 92093, USA
    4. Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, 92093, USA
    5. Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
  • ISSN:1573-4951
文摘
While it is well established that protonation and tautomeric states of ligands can significantly affect the results of virtual screening, such effects of ionizable residues of protein receptors are less well understood. In this study, we focus on histidine protonation and rotameric states and their impact on virtual screening of Mycobacterium tuberculosis enzyme RmlC. Depending on the net charge and the location of proton(s), a histidine can adopt three states: HIP (+1 charged, both δ- and ε-nitrogens protonated), HID (neutral, δ-nitrogen protonated), and HIE (neutral, ε-nitrogen protonated). Due to common ambiguities in X-ray crystal structures, a histidine may also be resolved as three additional states with its imidazole ring flipped. Here, we systematically investigate the predictive power of 36 receptor models with different protonation and rotameric states of two histidines in the RmlC active site by using results from a previous high-throughput screening. By measuring enrichment factors and area under the receiver operating characteristic curves, we show that virtual screening results vary depending on hydrogen bonding networks provided by the histidines, even in the cases where the ligand does not obviously interact with the side chain. Our results also suggest that, even with the help of widely used pKa prediction software, assigning histidine protonation and rotameric states for virtual screening can still be challenging and requires further examination and systematic characterization of the receptor-ligand complex.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700