R2R3 MYB transcription factor PtrMYB192 regulates flowering time in Arabidopsis by activating FLOWERING LOCUS C
详细信息    查看全文
  • 作者:Shanda Liu (1)
    Xiaoping Wang (1)
    Eryang Li (2)
    Carl J. Douglas (2)
    Jin-Gui Chen (3)
    Shucai Wang (1)
  • 关键词:Arabidopsis ; Flowering time ; MYB transcription factors ; Populus trichocarpa
  • 刊名:Journal of Plant Biology
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:56
  • 期:4
  • 页码:243-250
  • 全文大小:634KB
  • 参考文献:1. Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, et al. (2000) / Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967鈥?71 CrossRef
    2. Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16(Suppl):S18鈥揝31
    3. Chen Y, Yang X, He K, Liu M, Li J, Gao Z, et al. (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107鈥?24 CrossRef
    4. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of / Arabidopsis thaliana. Plant J 16:735鈥?43 CrossRef
    5. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573鈥?81 CrossRef
    6. Gendall AR, Levy YY, Wilson A, Dean C (2001) The / VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107:525鈥?35 CrossRef
    7. Geraldes A, Pang J, Thiessen N, Cezard T, Moore R, Zhao Y, Tam A, et al. (2011) SNP discovery in black cottonwood ( / Populus trichocarpa) by population transcriptome resequencing. Mol Ecol Resour Suppl 1:81鈥?2 CrossRef
    8. Guo J, Chen JG (2008) RACK1 genes regulate plant development with unequal genetic redundancy in Arabidopsis. BMC Plant Biol 8:108 CrossRef
    9. Guo J, Wang S, Valerius O, Hall H, Zeng Q, Li JF, et al. (2011) Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. Plant Physiol 155:370鈥?83 CrossRef
    10. Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of / Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989鈥?94 CrossRef
    11. Jang S, Marchal V, Panigrahi KC, Wenkel S, Soppe W, Deng XW, et al. (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27:1277鈥?288 CrossRef
    12. Jung JH, Seo PJ, Ahn JH, Park CM (2012) Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering. J Biol Chem 287:16007鈥?6016 CrossRef
    13. Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC (2012) Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics 13:544 CrossRef
    14. Lai LB, Nadeau JA, Lucas J, Lee EK, Nakagawa T, Zhao L, et al. (2005) The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage. Plant Cell 17:2754鈥?767 CrossRef
    15. Laubinger S, Marchal V, Le Gourrierec J, Wenkel S, Adrian J, Jang S, et al. (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133:3213鈥?222 CrossRef
    16. Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397鈥?02 CrossRef
    17. Lee MM, Schiefelbein J (1999) WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99:473鈥?83 CrossRef
    18. Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, et al. (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15:110鈥?20 CrossRef
    19. Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, et al. (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20:292鈥?06 CrossRef
    20. Mockler TC, Yu XH, Shalitin D, Parikh D, Michael TP, Liou J, et al. (2004) Regulation of flowering time in Arabidopsis by K homology domain proteins. Proc Natl Acad Sci USA 101:12759鈥?2764 CrossRef
    21. Nakamichi N, Kita M, Niinuma K, Ito S, Yamashino T, Mizoguchi T, et al. (2007) Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol 48:822鈥?32 CrossRef
    22. Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD (1991) A / myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67:483鈥?93 CrossRef
    23. Pazhouhandeh M, Molinier J, Berr A, Genschik P (2011) MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. Proc Natl Acad Sci USA 108:3430鈥?435 CrossRef
    24. Ralph S, Oddy C, Cooper D, Yueh H, Jancsik S, Kolosova N, et al. (2006). Genomics of hybrid poplar ( / Populus trichocarpax deltoides) interacting with forest tent caterpillars ( / Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences in poplar. Mol Ecol 15:1275鈥?297 CrossRef
    25. Ratcliffe OJ, Kumimoto RW, Wong BJ, Riechmann JL (2003) Analysis of the Arabidopsis / MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15:1159鈥?169 CrossRef
    26. Searle I, He Y, Turck F, Vincent C, Fornara F, Krober S, et al. (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898鈥?12 CrossRef
    27. Seo E, Yu J, Ryu KH, Lee MM, Lee I (2011) WEREWOLF, a regulator of root hair pattern formation, controls flowering time through the regulation of FT mRNA stability. Plant Physiol 156:1867鈥?877 CrossRef
    28. Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, Schachtman DP (2007) The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19:2440鈥?453 CrossRef
    29. Stracke R, Werber M, Weisshaar B (2001) The / R2R3-MYB gene family in / Arabidopsis thaliana. Curr Opin Plant Biol 4:447鈥?56 CrossRef
    30. Tamada Y, Yun JY, Woo SC, Amasino RM (2009) / ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of / FLOWERING LOCUS C. Plant Cell 21:3257鈥?269 CrossRef
    31. Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the / MYB75/PAP1 gene. Plant Physiol 139:1840鈥?852 CrossRef
    32. Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533鈥?43 CrossRef
    33. Tiwari S, Wang S, Hagen G, Guilfoyle TJ (2006) Transfection assays with protoplasts containing integrated reporter genes. Methods Mol Biol 323:237鈥?44
    34. Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, et al. (2013) Regulation of flowering by trehalose-6-phosphate signaling in / Arabidopsis thaliana. Science 339:704鈥?07 CrossRef
    35. Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in / Arabidopsis thaliana. Cell 138:738鈥?49 CrossRef
    36. Wang S, Tiwari SB, Hagen G, Guilfoyle TJ (2005) AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. Plant Cell 17:1979鈥?993 CrossRef
    37. Wang S, Chen JG (2008) Arabidopsis transient expression analysis reveals that activation of / GLABRA2 may require concurrent binding of GLABRA1 and GLABRA3 to the promoter of / GLABRA2. Plant Cell Physiol 49:1792鈥?804 CrossRef
    38. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, et al. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056鈥?059 CrossRef
    39. Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM (2009) Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant physiol 149:981鈥?93 CrossRef
    40. Yant L, Mathieu J, Schmid M (2009) Just say no: floral repressors help Arabidopsis bide the time. Curr Opin Plant Biol 12:580鈥?86 CrossRef
    41. Zhong R, Richardson EA, Ye ZH (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19:2776鈥?792 CrossRef
    42. Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763鈥?782 CrossRef
    43. Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248鈥?66 CrossRef
  • 作者单位:Shanda Liu (1)
    Xiaoping Wang (1)
    Eryang Li (2)
    Carl J. Douglas (2)
    Jin-Gui Chen (3)
    Shucai Wang (1)

    1. Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, 130024, China
    2. Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
    3. Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
文摘
R2R3 MYB transcription factors regulate multiple aspects of plant growth and development. Here we report the identification of PtrMYB192, a Populus R2R3 MYB transcription factor, as a negative regulator of flowering time. By using quantitative RT-PCR, we found that PtrMYB192, but not its closely homologous gene PtrMYB028, is highly expressed in mature leaves in Populus. Heterologously expression of PtrMYB192 under control of 35S promoter in Arabidopsis resulted in late flowering phenotypes under both long and short day conditions, indicating that PtrMYB192 controls flowering time independent of the photoperiod pathway. Domain swapping experiment showed that neither PtrMYB028DB-192AD nor PtrMYB192DB-028AD affected flowering time when heterologously expressed in Arabidopsis. However, when recruit to the promoter of a GAL4-GUS reporter gene by a GAL4 DNA binding domain in Arabidopsis protoplasts, both of PtrMYB028DB-192AD and PtrMYB192DB-028AD activated the reporter gene. Quantitative RT-PCR results showed an elevated expression of the floral repressor gene FLOWERING LOCUS C (FLC), but not the flowering-promoting gene CONSTANS (CO) in PtrMYB192 transgenic plants. Taken together, these results suggest that PtrMYB192 is a transcription activator that negatively regulating flowering time in Arabidopsis by activating FLC and possible other genes, and that both R2R3 DNA binding domain and activation domain maybe required for its full function.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700